Anionic Addition Polymerization - Monomer Characteristics

Monomer Characteristics

In order for polymerization to occur with vinyl monomers, the substituents on the double bond must be able to stabilize a negative charge. Stabilization occurs through delocalization of the negative charge. Because of the nature of the carbanion propagating center, substituents that react with bases or nucleophiles either must not be present or be protected.

Vinyl monomers with substituents that stabilize the negative charge through charge delocalization, undergo polymerization without termination or chain transfer. These monomers include styrene, dienes, methacrylate, vinyl pyridine, aldehydes, epoxide, episulfide, cyclic siloxane, and lactones. Polar monomers, using controlled conditions and low temperatures, can undergo anionic polymerization. However, at higher temperatures they do not produce living stable, carbanionic chain ends because their polar substituents can undergo side reactions with both initiators and propagating chain centers. The effects of counterion, solvent, temperature, Lewis base additives, and inorganic solvents have been investigated to increase the potential of anionic polymerizations of polar monomers. Polar monomers include acrylonitrile, cyanoacrylate, propylene oxide, vinyl ketone, acrolein, vinyl sulfone, vinyl sulfoxide, vinyl silane and isocyanate.

Read more about this topic:  Anionic Addition Polymerization