Extensions To Classical Field Theory
- Lagrangian field theory
Replacing the generalized coordinates by scalar fields φ(r, t), and introducing the Lagrangian density (Lagrangian per unit volume), in which the Lagrangian is the volume integral of it:
where ∂μ denotes the 4-gradient, the Euler-Lagrange equations can be extended to classical fields (such as Newtonian gravity and classical electromagnetism):
where the summation convention has been used. This formulation is an important basis for quantum field theory - by replacing wavefunctions with scalar fields.
- Hamiltonian field theory
The corresponding momentum field density conjugate to the field φ(r, t) is:
The Hamiltonian density (Hamiltonian per unit volume) is likewise;
and satisfies analogously:
Read more about this topic: Analytical Mechanics
Famous quotes containing the words extensions, classical, field and/or theory:
“If we focus exclusively on teaching our children to read, write, spell, and count in their first years of life, we turn our homes into extensions of school and turn bringing up a child into an exercise in curriculum development. We should be parents first and teachers of academic skills second.”
—Neil Kurshan (20th century)
“Against classical philosophy: thinking about eternity or the immensity of the universe does not lessen my unhappiness.”
—Mason Cooley (b. 1927)
“The woman ... turned her melancholy tone into a scolding one. She was not very young, and the wrinkles in her face were filled with drops of water which had fallen from her eyes, which, with the yellowness of her complexion, made a figure not unlike a field in the decline of the year, when the harvest is gathered in and a smart shower of rain has filled the furrows with water. Her voice was so shrill that they all jumped into the coach as fast as they could and drove from the door.”
—Sarah Fielding (17101768)
“It makes no sense to say what the objects of a theory are,
beyond saying how to interpret or reinterpret that theory in another.”
—Willard Van Orman Quine (b. 1908)