Extensions To Classical Field Theory
- Lagrangian field theory
Replacing the generalized coordinates by scalar fields φ(r, t), and introducing the Lagrangian density (Lagrangian per unit volume), in which the Lagrangian is the volume integral of it:
where ∂μ denotes the 4-gradient, the Euler-Lagrange equations can be extended to classical fields (such as Newtonian gravity and classical electromagnetism):
where the summation convention has been used. This formulation is an important basis for quantum field theory - by replacing wavefunctions with scalar fields.
- Hamiltonian field theory
The corresponding momentum field density conjugate to the field φ(r, t) is:
The Hamiltonian density (Hamiltonian per unit volume) is likewise;
and satisfies analogously:
Read more about this topic: Analytical Mechanics
Famous quotes containing the words extensions, classical, field and/or theory:
“The psychological umbilical cord is more difficult to cut than the real one. We experience our children as extensions of ourselves, and we feel as though their behavior is an expression of something within us...instead of an expression of something in them. We see in our children our own reflection, and when we dont like what we see, we feel angry at the reflection.”
—Elaine Heffner (20th century)
“Against classical philosophy: thinking about eternity or the immensity of the universe does not lessen my unhappiness.”
—Mason Cooley (b. 1927)
“The totality of our so-called knowledge or beliefs, from the most casual matters of geography and history to the profoundest laws of atomic physics or even of pure mathematics and logic, is a man-made fabric which impinges on experience only along the edges. Or, to change the figure, total science is like a field of force whose boundary conditions are experience.”
—Willard Van Orman Quine (b. 1908)
“The great tragedy of sciencethe slaying of a beautiful theory by an ugly fact.”
—Thomas Henry Huxley (18251895)