Amyloid - Amyloid Biophysics

Amyloid Biophysics

Amyloid is characterized by a cross-beta sheet quaternary structure. While amyloid is usually identified using fluorescent dyes, stain polarimetry, circular dichroism, or FTIR (all indirect measurements), the "gold-standard" test to see if a structure contains cross-beta fibres is by placing a sample in an X-ray diffraction beam. The term "cross-beta" was based on the observation of two sets of diffraction lines, one longitudinal and one transverse, that form a characteristic "cross" pattern. There are two characteristic scattering diffraction signals produced at 4.7 and 10 Ã…ngstroms (0.47 nm and 1.0 nm), corresponding to the interstrand and stacking distances in beta sheets. The "stacks" of beta sheet are short and traverse the breadth of the amyloid fibril; the length of the amyloid fibril is built by aligned strands.

Recent x-ray diffraction studies of microcrystals revealed atomistic details of core region of amyloid. In the crystallographic structure short stretches from amyloid prone region of amyloidogenic proteins run perpendicular to the filament axis, confirming the "cross-beta" model. In addition two layers of beta-sheet interdigitate to create compact dehydrated interface termed as steric-zipper interface. There are eight classes of steric-zipper interfaces, depending on types of beta-sheet (parallel and anti-parallel) and symmetry between two adjacent beta-sheets.

Amyloid polymerization (aggregation or non-covalent polymerization) is generally sequence-sensitive, that is, causing mutations in the sequence can prevent self-assembly, especially if the mutation is a beta-sheet breaker, such as proline or non-coded alpha-aminoisobutyric acid. For example, humans produce amylin, an amyloidogenic peptide associated with type II diabetes, but in rats and mice prolines are substituted in critical locations and amyloidogenesis does not occur.

There are two broad classes of amyloid-forming polypeptide sequences. Glutamine-rich polypeptides are important in the amyloidogenesis of Yeast and mammalian prions, as well as Trinucleotide repeat disorders including Huntington's disease. When peptides are in a beta-sheet conformation, including arrangements in which the beta-strands are parallel and in-register (causing alignment of residues), glutamines can brace the structure by forming inter-strand hydrogen bonding between its amide carbonyls and nitrogens. In general, for this class of diseases, toxicity correlates with glutamine content. This has been observed in studies of onset age for Huntington's disease (the longer the polyglutamine sequence, the sooner the symptoms appear), and has been confirmed in a C. elegans model system with engineered polyglutamine peptides.

Other polypeptides and proteins such as amylin and the Alzheimer's beta protein do not have a simple consensus sequence and are thought to operate by hydrophobic association. Among the hydrophobic residues, aromatic amino-acids are found to have the highest amyloidogenic propensity.

For these peptides, cross-polymerization (fibrils of one polypeptide sequence causing other fibrils of another sequence to form) is observed in vitro and possibly in vivo. This phenomenon is important since it would explain interspecies prion propagation and differential rates of prion propagation, as well as a statistical link between Alzheimer's and type 2 diabetes. In general, the more similar the peptide sequence the more efficient cross-polymerization is, though entirely dissimilar sequences can cross-polymerize and highly similar sequences can even be "blockers" which prevent polymerization. Polypeptides will not cross-polymerize their mirror-image counterparts, indicating that the phenomenon involves specific binding and recognition events.

Read more about this topic:  Amyloid