Aluminium Sulfate - Chemical Reactions

Chemical Reactions

The compound decomposes to γ−alumina and sulfur trioxide when heated between 580 and 900 °C. It combines with water forming hydrated salts of various compositions.

Aluminium sulfate reacts with sodium bicarbonate to which foam stabilizer has been added, producing carbon dioxide for fire-extinguishing foams:

Al2(SO4)3 + 6 NaHCO3 → 3 Na2SO4 + 2 Al(OH)3 + 6 CO2

The carbon dioxide is trapped by the foam stabilizer and creates a thick foam which will float on top of hydrocarbon fuels and seal off access to atmospheric oxygen, smothering the fire. Chemical foam was unsuitable for use on polar solvents such as alcohol, as the fuel would mix with and break down the foam blanket. The carbon dioxide generated also served to propel the foam out of the container, be it a portable fire extinguisher or fixed installation using hoselines. Chemical foam is considered obsolete in the United States and has been replaced by synthetic mechanical foams, such as AFFF which have a longer shelf life, are more effective, and more versatile, although some countries such as Japan and India continue to use it.

Read more about this topic:  Aluminium Sulfate

Famous quotes containing the words chemical and/or reactions:

    If Thought is capable of being classed with Electricity, or Will with chemical affinity, as a mode of motion, it seems necessary to fall at once under the second law of thermodynamics as one of the energies which most easily degrades itself, and, if not carefully guarded, returns bodily to the cheaper form called Heat. Of all possible theories, this is likely to prove the most fatal to Professors of History.
    Henry Brooks Adams (1838–1918)

    Separation anxiety is normal part of development, but individual reactions are partly explained by experience, that is, by how frequently children have been left in the care of others.... A mother who is never apart from her young child may be saying to him or her subliminally: “You are only safe when I’m with you.”
    Cathy Rindner Tempelsman (20th century)