Alloy - History

History

The use of alloys by humans started with the use of meteoric iron, a naturally occurring alloy of nickel and iron. As no metallurgic processes were used to separate iron from nickel, the alloy was used as it was. Meteoric iron could be forged from a red heat to make objects such as tools, weapons, and nails. In many cultures it was shaped by cold hammering into knives and arrowheads. They were often used as anvils. Meteoric iron was very rare and valuable, and difficult for ancient people to work.

Iron is usually found as iron ore on Earth, except for one deposit of native iron in Greenland, which was used by the Inuit people. Native copper, however, was found worldwide, along with silver, gold and platinum, which were also used to make tools, jewelry, and other objects since Neolithic times. Copper was the hardest of these metals, and the most widely distributed. It became one of the most important metals to the ancients. Eventually, humans learned to smelt metals such as copper and tin from ore, and, around 2500 BC, began alloying the two metals to form bronze, which is much harder than its ingredients. Tin was rare, however, being found mostly in Great Britain. In the Middle East, people began alloying copper with zinc to form brass. Ancient civilizations took into account the mixture and the various properties it produced, such as hardness, toughness and melting point, under various conditions of temperature and work hardening, developing much of the information contained in modern alloy constitution diagrams.

The first known smelting of iron began in Anatolia, around 1800 BC. Called the bloomery process, it produced very soft but ductile wrought iron and, by 800 BC, the technology had spread to Europe. Pig iron, a very hard but brittle alloy of iron and carbon, was being produced in China as early as 1200 BC, but did not arrive in Europe until the Middle Ages. These metals found little practical use until the introduction of crucible steel around 300 BC. These steels were of poor quality, and the introduction of pattern welding, around the 1st century AD, sought to balance the extreme properties of the alloys by laminating them, to create a tougher metal.

Mercury had been smelted from cinnabar for thousands of years. Mercury dissolves many metals, such as gold, silver, and tin, to form amalgams (an alloy in a soft paste, or liquid form at ambient temperature). Amalgams have been used since 200 BC in China for plating objects with precious metals, called gilding, such as armor and mirrors. The ancient Romans often used mercury-tin amalgams for gilding their armor. The amalgam was applied as a paste and then heated until the mercury vaporized, leaving the gold, silver, or tin behind. Mercury was often used in mining, to extract precious metals like gold and silver from their ores.

Many ancient civilizations alloyed metals for purely aesthetic purposes. In ancient Egypt and Mycenae, gold was often alloyed with copper to produce red-gold, or iron to produce a bright burgundy-gold. Silver was often found alloyed with gold. These metals were also used to strengthen each other, for more practical purposes. Quite often, precious metals were alloyed with less valuable substances as a means to deceive buyers. Around 250 BC, Archimedes was commissioned by the king to find a way to check the purity of the gold in a crown, leading to the famous bath-house shouting of "Eureka!" upon the discovery of Archimedes' principle.

While the use of iron started to become more widespread around 1200 BC, mainly because of interruptions in the trade routes for tin, the metal is much softer than bronze. However, very small amounts of steel, (an alloy of iron and around 1% carbon), was always a byproduct of the bloomery process. The ability to modify the hardness of steel by heat treatment had been known since 1100 BC, and the rare material was valued for use in tool and weapon making. Because the ancients could not produce temperatures high enough to melt iron fully, the production of steel in decent quantities did not occur until the introduction of blister steel during the Middle Ages. This method introduced carbon by heating wrought iron in charcoal for long periods of time, but the penetration of carbon was not very deep, so the alloy was not homogeneous. In 1740, Benjamin Huntsman began melting blister steel in a crucible to even out the carbon content, creating the first process for the mass production of tool steel. Huntsman's process was used for manufacturing tool steel until the early 1900s.

With the introduction of the blast furnace to Europe in the Middle Ages, pig iron was able to be produced in much higher volumes than wrought iron. Because pig iron could be melted, people began to develop processes of reducing the carbon in the liquid pig iron to create steel. Puddling was introduced during the 1700s, where molten pig iron was stirred while exposed to the air, to remove the carbon by oxidation. In 1858, Sir Henry Bessemer developed a process of steel making by blowing hot air through liquid pig iron to reduce the carbon content. The Bessemer process was able to produce the first large scale manufacture of steel. Once the Bessemer process began to gain widespread use, other alloys of steel began to follow, such as mangalloy, an alloy of steel and manganese, which exhibits extreme hardness and toughness.

In 1906, precipitation hardening alloys were discovered by Alfred Wilm. Precipitation hardening alloys, such as certain alloys of aluminium, titanium, and copper, are heat-treatable alloys that soften when quenched (cooled quickly), and then harden over time. After quenching a ternary alloy of aluminium, copper, and magnesium, Wilm discovered that the alloy increased in hardness when left to age at room temperature. Although an explanation for the phenomenon was not provided until 1919, duralumin was one of the first "age hardening" alloys to be used, and was soon followed by many others. Because they often exhibit a combination of high strength and low weight, these alloys became widely used in many forms of industry, including the construction of modern aircraft.

Read more about this topic:  Alloy

Famous quotes containing the word history:

    Revolutions are the periods of history when individuals count most.
    Norman Mailer (b. 1923)

    History does nothing; it does not possess immense riches, it does not fight battles. It is men, real, living, who do all this.... It is not “history” which uses men as a means of achieving—as if it were an individual person—its own ends. History is nothing but the activity of men in pursuit of their ends.
    Karl Marx (1818–1883)

    The history of work has been, in part, the history of the worker’s body. Production depended on what the body could accomplish with strength and skill. Techniques that improve output have been driven by a general desire to decrease the pain of labor as well as by employers’ intentions to escape dependency upon that knowledge which only the sentient laboring body could provide.
    Shoshana Zuboff (b. 1951)