Allen Telescope Array - Key Science Goals

Key Science Goals

The science goals listed here represent the goals of the most important projects that will be conducted over the next three years with the ATA. Each of these goals is associated with one of the four stages of development (see Table 1). The bulleted items are the projects that will be undertaken and the subtopics are some of the science that will be produced. The ATA will:

  • Determine the HI content of galaxies out to z ∼ 0.2 over 3π steradians, to measure how much intergalactic gas external galaxies are accreting; to search for dark, starless galaxies; to lay the foundation for SKA dark energy detection
  • Classify 250,000 extragalactic radio sources as active galactic nuclei or starburst galaxies, to probe and quantify star formation in the local Universe; to identify high redshift objects; to probe large scale structure in the Universe; to identify gravitational lens candidates for dark matter and dark energy detection
  • Explore the transient sky, to probe accretion onto black holes; to find orphan gamma ray burst afterglows; to discover new and unknown transient phenomena
  • Survey 1,000,000 stars for SETI emission with enough sensitivity to detect an Arecibo radar out to 300 pc within the range of 1 and 10 GHz
  • Survey the 4×1010 stars of the inner galactic plane from 1.42 to 1.72 GHz for very powerful transmitters
  • Measure the magnetic fields in the Milky Way and other Local Group galaxies, to probe the role of magnetic fields in star formation and galaxy formation and evolution
  • Detect the gravitational wave background from massive black holes through pulsar timing
  • Measure molecular cloud and star formation properties using new molecular tracers, to map the star formation conditions on the scale of entire giant molecular clouds (GMCs); to determine the metallicity gradient of the Milky Way
Table 1: Array performance and key science projects
Array Status Beam size (arcsec) Srms (mJy) Speed (deg²s−1) Key science
ATA-42 Dish construction complete; commissioning in progress with 32 input, dual polarization (64 total inputs) correlator. 245 x 118 0.54 0.02 FiGSS: 5 GHz Continuum Survey, Galactic Plane Molecular Spectroscopy, SETI Galactic Center Survey
ATA-98 Awaiting results ATA-42 for funding 120 x 80 0.2 0.11 ATHIXS† Trial Surveys, HI Stellar Outflows Survey, SETI Targeted Survey: 100 stars
ATA-206 TBD 75 x 65 0.11 0.44 ATHIXS, Map The Magnetized Galactic ISM, Pulsar Timing Array, Deep continuum and transient surveys, SETI Targeted Surveys
ATA-350 TBD 77 x 66 0.065 1.40 ATHIXS, Map The Magnetized Galactic ISM, Pulsar Timing Array Deep continuum and transient surveys, SETI Targeted Surveys
Note. Beam size and continuum sensitivity (Srms are estimated for a 6 minute, 100 MHz continuum snapshot observation at transit of a source at 40° declination at a wavelength of 21 cm. Speed is given for a survey at 21 cm observations with a bandwidth of 100 MHz that reaches 1 mJy rms.

ATHIXS is an all-sky deep HI extragalactic HI survey.

Read more about this topic:  Allen Telescope Array

Famous quotes containing the words key, science and/or goals:

    Every revolution was first a thought in one man’s mind, and when the same thought occurs in another man, it is the key to that era.
    Ralph Waldo Emerson (1803–1882)

    We have lost the art of living; and in the most important science of all, the science of daily life, the science of behaviour, we are complete ignoramuses. We have psychology instead.
    —D.H. (David Herbert)

    Let us beware of saying there are laws in nature. There are only necessities: there is no one to command, no one to obey, no one to transgress. When you realize there are no goals or objectives, then you realize, too, that there is no chance: for only in a world of objectives does the word “chance” have any meaning.
    Friedrich Nietzsche (1844–1900)