Allan Variance - Bias Functions

Bias Functions

The M-sample variance, and the defined special case Allan variance, will experience systematic bias depending on different number of samples M and different relationship between T and τ. In order address these biases the bias-functions B1 and B2 has been defined and allows for conversion between different M and T values.

These bias functions is not sufficient for handling the bias resulting from concatenating M samples to the 0 observation time over the MT0 with has the dead-time distributed among the M measurement blocks rather than in the end of the measurement. This rendered the need for the B3 bias.

The bias functions is evaluated for a particular µ value, so the α-µ mapping needs to be done for the dominant noise form as found using noise identification. Alternatively as proposed in and elaborated in the µ value of the dominant noise form may be inferred from the measurements using the bias functions.

Read more about this topic:  Allan Variance

Famous quotes containing the words bias and/or functions:

    The solar system has no anxiety about its reputation, and the credit of truth and honesty is as safe; nor have I any fear that a skeptical bias can be given by leaning hard on the sides of fate, of practical power, or of trade, which the doctrine of Faith cannot down-weigh.
    Ralph Waldo Emerson (1803–1882)

    Mark the babe
    Not long accustomed to this breathing world;
    One that hath barely learned to shape a smile,
    Though yet irrational of soul, to grasp
    With tiny finger—to let fall a tear;
    And, as the heavy cloud of sleep dissolves,
    To stretch his limbs, bemocking, as might seem,
    The outward functions of intelligent man.
    William Wordsworth (1770–1850)