Alkaline Fuel Cell - Electrolyte

Electrolyte

The two electrodes are separated by a porous matrix saturated with an aqueous alkaline solution, such as potassium hydroxide (KOH). Aqueous alkaline solutions do not reject carbon dioxide (CO2) so the fuel cell can become "poisoned" through the conversion of KOH to potassium carbonate (K2CO3). Because of this, alkaline fuel cells typically operate on pure oxygen, or at least purified air and would incorporate a 'scrubber' into the design to clean out as much of the carbon dioxide as is possible. Because the generation and storage requirements of oxygen make pure-oxygen AFCs expensive, there are few companies engaged in active development of the technology. There is, however, some debate in the research community over whether the poisoning is permanent or reversible. The main mechanisms of poisoning are blocking of the pores in the cathode with K2CO3, which is not reversible, and reduction in the ionic conductivity of the electrolyte, which may be reversible by returning the KOH to its original concentration. An alternate method involves simply replacing the KOH which returns the cell back to its original output.

Read more about this topic:  Alkaline Fuel Cell