Algebraic Variety - Discussion and Generalizations

Discussion and Generalizations

The basic definitions and facts above enable one to do classical algebraic geometry. To be able to do more — for example, to deal with varieties over fields that are not algebraically closed — some foundational changes are required. The modern notion of a variety is considerably more abstract than the one above, though equivalent in the case of varieties over algebraically closed fields. An abstract algebraic variety is a particular kind of scheme; the generalization to schemes on the geometric side enables an extension of the correspondence described above to a wider class of rings. A scheme is a locally ringed space such that every point has a neighbourhood, which, as a locally ringed space, is isomorphic to a spectrum of a ring. Basically, a variety is a scheme whose structure sheaf is a sheaf of k-algebras with the property that the rings R that occur above are all integral domains and are all finitely generated k-algebras, i.e., quotients of polynomial algebras by prime ideals.

This definition works over any field k. It allows you to glue affine varieties (along common open sets) without worrying whether the resulting object can be put into some projective space. This also leads to difficulties since one can introduce somewhat pathological objects, e.g. an affine line with zero doubled. Such objects are usually not considered varieties, and are eliminated by requiring the schemes underlying a variety to be separated. (Strictly speaking, there is also a third condition, namely, that one needs only finitely many affine patches in the definition above.)

Some modern researchers also remove the restriction on a variety having integral domain affine charts, and when speaking of a variety simply mean that the affine charts have trivial nilradical.

A complete variety is a variety such that any map from an open subset of a nonsingular curve into it can be extended uniquely to the whole curve. Every projective variety is complete, but not vice versa.

These varieties have been called 'varieties in the sense of Serre', since Serre's foundational paper FAC on sheaf cohomology was written for them. They remain typical objects to start studying in algebraic geometry, even if more general objects are also used in an auxiliary way.

One way that leads to generalisations is to allow reducible algebraic sets (and fields k that aren't algebraically closed), so the rings R may not be integral domains. A more significant modification is to allow nilpotents in the sheaf of rings. A nilpotent in a field must be 0: these if allowed in coordinate rings aren't seen as coordinate functions.

From the categorical point of view, nilpotents must be allowed, in order to have finite limits of varieties (to get fiber products). Geometrically this says that fibres of good mappings may have 'infinitesimal' structure. In the theory of schemes of Grothendieck these points are all reconciled: but the general scheme is far from having the immediate geometric content of a variety.

There are further generalizations called algebraic spaces and stacks.

Read more about this topic:  Algebraic Variety

Famous quotes containing the words discussion and and/or discussion:

    Opinions are formed in a process of open discussion and public debate, and where no opportunity for the forming of opinions exists, there may be moods—moods of the masses and moods of individuals, the latter no less fickle and unreliable than the former—but no opinion.
    Hannah Arendt (1906–1975)

    Opinions are formed in a process of open discussion and public debate, and where no opportunity for the forming of opinions exists, there may be moods—moods of the masses and moods of individuals, the latter no less fickle and unreliable than the former—but no opinion.
    Hannah Arendt (1906–1975)