Complex Curves and Real Surfaces
A complex projective algebraic curve resides in n-dimensional complex projective space CPn. This has complex dimension n, but topological dimension, as a real manifold, 2n, and is compact, connected, and orientable. An algebraic curve likewise has topological dimension two; in other words, it is a surface. A nonsingular complex projective algebraic curve will then be a smooth orientable surface as a real manifold, embedded in a compact real manifold of dimension 2n which is CPn regarded as a real manifold.
The topological genus of this surface, that is the number of handles or donut holes, is equal to the genus of the algebraic curve that may be computed by algebraic means. In short, if one consider a plane projection of a non singular curve, that has degree d and only ordinary singularities (singularities of multiplicity two with distinct tangents), then the genus is (d - 1)(d - 2)/2 - k, where k is the number of these singularities.
Read more about this topic: Algebraic Curve
Famous quotes containing the words complex, curves, real and/or surfaces:
“The money complex is the demonic, and the demonic is Gods ape; the money complex is therefore the heir to and substitute for the religious complex, an attempt to find God in things.”
—Norman O. Brown (b. 1913)
“At the end of every diet, the path curves back toward the trough.”
—Mason Cooley (b. 1927)
“No ... the real American has not yet arrived. He is only in the Crucible, I tell youhe will be the fusion of all races, perhaps the coming superman.”
—Israel Zangwill (18641926)
“But ice-crunching and loud gum-chewing, together with drumming on tables, and whistling the same tune seventy times in succession, because they indicate an indifference on the part of the perpetrator to the rest of the world in general, are not only registered on the delicate surfaces of the brain but eat little holes in it until it finally collapses or blows up.”
—Robert Benchley (18891945)