Affine Differential Geometry - Two Natural Conditions

Two Natural Conditions

We impose two natural conditions. The first is that the induced connexion ∇ and the induced volume form ω be compatible, i.e. ∇ω ≡ 0. This means that ∇Xω = 0 for all X ∈ Ψ(M). In other words, if we parallel transport the vectors X1,…,Xn along some curve in M, with respect to the connexion ∇, then the volume spanned by X1,…,Xn, with respect to the volume form ω, does not change. A direct calculation shows that ∇Xω = τ(X)ω and so ∇Xω = 0 for all X ∈ Ψ(M) if, and only if, τ ≡ 0, i.e. DXξ ∈ Ψ(M) for all X ∈ Ψ(M). This means that the derivative of ξ, in a tangent direction X, with respect to D always yields a, possibly zero, tangent vector to M. The second condition is that the two volume forms ω and ν coincide, i.e. ω ≡ ν.

Read more about this topic:  Affine Differential Geometry

Famous quotes containing the words natural and/or conditions:

    The natural man has only two primal passions, to get and to beget.
    Sir William Osler (1849–1919)

    Brutus had rather be a villager
    Than to repute himself a son of Rome
    Under these hard conditions as this time
    Is like to lay upon us.
    William Shakespeare (1564–1616)