Affine Differential Geometry - Two Natural Conditions

Two Natural Conditions

We impose two natural conditions. The first is that the induced connexion ∇ and the induced volume form ω be compatible, i.e. ∇ω ≡ 0. This means that ∇Xω = 0 for all X ∈ Ψ(M). In other words, if we parallel transport the vectors X1,…,Xn along some curve in M, with respect to the connexion ∇, then the volume spanned by X1,…,Xn, with respect to the volume form ω, does not change. A direct calculation shows that ∇Xω = τ(X)ω and so ∇Xω = 0 for all X ∈ Ψ(M) if, and only if, τ ≡ 0, i.e. DXξ ∈ Ψ(M) for all X ∈ Ψ(M). This means that the derivative of ξ, in a tangent direction X, with respect to D always yields a, possibly zero, tangent vector to M. The second condition is that the two volume forms ω and ν coincide, i.e. ω ≡ ν.

Read more about this topic:  Affine Differential Geometry

Famous quotes containing the words natural and/or conditions:

    All the moral laws are readily translated into natural philosophy, for often we have only to restore the primitive meaning of the words by which they are expressed, or to attend to their literal instead of their metaphorical sense. They are already supernatural philosophy.
    Henry David Thoreau (1817–1862)

    One cannot divine nor forecast the conditions that will make happiness; one only stumbles upon them by chance, in a lucky hour, at the world’s end somewhere, and hold fast to the days, as to fortune or fame.
    Willa Cather (1876–1947)