Admissible Decision Rule - Definition

Definition

Define sets, and, where are the states of nature, the possible observations, and the actions that may be taken. An observation is distributed as and therefore provides evidence about the state of nature . A decision rule is a function, where upon observing, we choose to take action .

Also define a loss function, which specifies the loss we would incur by taking action when the true state of nature is . Usually we will take this action after observing data, so that the loss will be . (It is possible though unconventional to recast the following definitions in terms of a utility function, which is the negative of the loss.)

Define the risk function as the expectation

Whether a decision rule has low risk depends on the true state of nature . A decision rule dominates a decision rule if and only if for all, and the inequality is strict for some .

A decision rule is admissible (with respect to the loss function) if and only if no other rule dominates it; otherwise it is inadmissible. Thus an admissible decision rule is a maximal element with respect to the above partial order. An inadmissible rule is not preferred (except for reasons of simplicity or computational efficiency), since by definition there is some other rule that will achieve equal or lower risk for all . But just because a rule is admissible does not mean it is a good rule to use. Being admissible means there is no other single rule that is always better - but other admissible rules might achieve lower risk for most that occur in practice. (The Bayes risk discussed below is a way of explicitly considering which occur in practice.)

Read more about this topic:  Admissible Decision Rule

Famous quotes containing the word definition:

    Scientific method is the way to truth, but it affords, even in
    principle, no unique definition of truth. Any so-called pragmatic
    definition of truth is doomed to failure equally.
    Willard Van Orman Quine (b. 1908)

    It’s a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was “mine.”
    Jane Adams (20th century)

    The physicians say, they are not materialists; but they are:MSpirit is matter reduced to an extreme thinness: O so thin!—But the definition of spiritual should be, that which is its own evidence. What notions do they attach to love! what to religion! One would not willingly pronounce these words in their hearing, and give them the occasion to profane them.
    Ralph Waldo Emerson (1803–1882)