Actin - History

History

Actin was first observed experimentally in 1887 by W.D. Halliburton, who extracted a protein from muscle that 'coagulated' preparations of myosin, which he dubbed "myosin-ferment". However, Halliburton was unable to further characterise his findings, and the discovery of actin is credited instead to Brunó Ferenc Straub, a young biochemist working in Albert Szent-Györgyi's laboratory at the Institute of Medical Chemistry at the University of Szeged, Hungary.

In 1942, Straub developed a novel technique for extracting muscle protein that allowed him to isolate substantial amounts of relatively pure actin. Straub's method is essentially the same as that used in laboratories today. Szent-Gyorgyi had previously described the more viscous form of myosin produced by slow muscle extractions as 'activated' myosin, and, since Straub's protein produced the activating effect, it was dubbed actin. The hostilities of World War II meant Szent-Gyorgyi and Straub were unable to publish the work in Western scientific journals; it became well known in the West only in 1945, when it was published as a supplement to the Acta Physiologica Scandinavica.

Straub continued to work on actin, and in 1950 reported that actin contains bound ATP and that, during polymerisation of the protein into microfilaments, the nucleotide is hydrolysed to ADP and inorganic phosphate (which remain bound in the microfilament). Straub suggested the transformation of ATP-bound actin to ADP-bound actin played a role in muscular contraction. In fact, this is true only in smooth muscle, and was not supported through experimentation until 2001.

The crystal structure of G-actin was solved in 1990 by Kabsch and colleagues. In the same year, a model for F-actin was proposed by Holmes and colleagues. The model was derived by fitting a helix of G-actin structures according to low-resolution fiber diffraction data from the filament. Several models of the filament have been proposed since. However, there is still no high-resolution X-ray structure of F-actin.

The Listeria bacteria use the cellular machinery to move around inside the host cell, by inducing directed polymerisation of actin by the ActA transmembrane protein, thus pushing the bacterial cell around.

Read more about this topic:  Actin

Famous quotes containing the word history:

    The history of all Magazines shows plainly that those which have attained celebrity were indebted for it to articles similar in natureto Berenice—although, I grant you, far superior in style and execution. I say similar in nature. You ask me in what does this nature consist? In the ludicrous heightened into the grotesque: the fearful coloured into the horrible: the witty exaggerated into the burlesque: the singular wrought out into the strange and mystical.
    Edgar Allan Poe (1809–1849)

    The history of work has been, in part, the history of the worker’s body. Production depended on what the body could accomplish with strength and skill. Techniques that improve output have been driven by a general desire to decrease the pain of labor as well as by employers’ intentions to escape dependency upon that knowledge which only the sentient laboring body could provide.
    Shoshana Zuboff (b. 1951)

    Books of natural history aim commonly to be hasty schedules, or inventories of God’s property, by some clerk. They do not in the least teach the divine view of nature, but the popular view, or rather the popular method of studying nature, and make haste to conduct the persevering pupil only into that dilemma where the professors always dwell.
    Henry David Thoreau (1817–1862)