Arithmetic Semigroups
The fundamental notion involved is that of an arithmetic semigroup, which is a commutative monoid G satisfying the following properties:
- There exists a countable subset (finite or countably infinite) P of G, such that every element a ≠ 1 in G has a unique factorisation of the form
- where the pi are distinct elements of P, the αi are positive integers, r may depend on a, and two factorisations are considered the same if they differ only by the order of the factors indicated. The elements of P are called the primes of G.
- There exists a real-valued norm mapping on G such that
- The total number of elements of norm is finite, for each real .
Read more about this topic: Abstract Analytic Number Theory
Famous quotes containing the word arithmetic:
“I hope I may claim in the present work to have made it probable that the laws of arithmetic are analytic judgments and consequently a priori. Arithmetic thus becomes simply a development of logic, and every proposition of arithmetic a law of logic, albeit a derivative one. To apply arithmetic in the physical sciences is to bring logic to bear on observed facts; calculation becomes deduction.”
—Gottlob Frege (18481925)
Related Phrases
Related Words