Ab Initio Quantum Chemistry Methods

Ab Initio Quantum Chemistry Methods

Ab initio quantum chemistry methods are computational chemistry methods based on quantum chemistry. The term ab initio was first used in quantum chemistry by Robert Parr and coworkers, including David Craig in a semiempirical study on the excited states of benzene. The background is described by Parr. In its modern meaning ('from first principles of quantum mechanics') the term was used by Chen (when quoting an unpublished 1955 MIT report by Allen and Nesbet), by Roothaan and, in the title of an article, by Allen and Karo, who also clearly define it.

Almost always the basis set (which is usually built from the LCAO ansatz) used to solve the Schrödinger equation is not complete, and does not span the Hilbert space associated with ionization and scattering processes (see continuous spectrum for more details). In the Hartree-Fock method and the configuration interaction method, this approximation allows one to treat the Schrödinger equation as a "simple" eigenvalue equation of the electronic molecular Hamiltonian, with a discrete set of solutions.

Read more about Ab Initio Quantum Chemistry Methods:  Accuracy and Scaling

Famous quotes containing the words quantum, chemistry and/or methods:

    But how is one to make a scientist understand that there is something unalterably deranged about differential calculus, quantum theory, or the obscene and so inanely liturgical ordeals of the precession of the equinoxes.
    Antonin Artaud (1896–1948)

    The chemistry of dissatisfaction is as the chemistry of some marvelously potent tar. In it are the building stones of explosives, stimulants, poisons, opiates, perfumes and stenches.
    Eric Hoffer (1902–1983)

    In inner-party politics, these methods lead, as we shall yet see, to this: the party organization substitutes itself for the party, the central committee substitutes itself for the organization, and, finally, a “dictator” substitutes himself for the central committee.
    Leon Trotsky (1879–1940)