In algebraic geometry, a branch of mathematics, a Zariski surface is a surface over a field of characteristic p > 0 such that there is a dominant inseparable map of degree p from the projective plane to the surface. In particular, all Zariski surfaces are unirational. They were named after Oscar Zariski who used them in 1958 to give examples of unirational surfaces in characteristic p > 0 that are not rational. (In characteristic 0 by contrast, Castelnuovo's theorem implies that all unirational surfaces are rational.)
Zariski surfaces are birational to surfaces in affine 3-space A3 defined by irreducible polynomials of the form
The following problem posed by Oscar Zariski in 1971 is still open: let p ≥ 5, let S be a Zariski surface with vanishing geometric genus. Is S necessarily a rational surface? For p = 2 and for p = 3 the answer to the above problem is negative as shown in 1977 by Piotr Blass in his University of Michigan Ph.D. thesis and by William E. Lang in his Harvard Ph.D. thesis in 1978.
Famous quotes containing the word surface:
“Night City was like a deranged experiment in Social Darwinism, designed by a bored researcher who kept one thumb permanently on the fast-forward button. Stop hustling and you sank without a trace, but move a little too swiftly and youd break the fragile surface tension of the black market; either way, you were gone ... though heart or lungs or kidneys might survive in the service of some stranger with New Yen for the clinic tanks.”
—William Gibson (b. 1948)