World Line - World Lines in Special Relativity

World Lines in Special Relativity

So far a world line (and the concept of tangent vectors) has been described without a means of quantifying the interval between events. The basic mathematics is as follows: The theory of special relativity puts some constraints on possible world lines. In special relativity the description of spacetime is limited to special coordinate systems that do not accelerate (and so do not rotate either), called inertial coordinate systems. In such coordinate systems, the speed of light is a constant. The structure of spacetime is determined by a bilinear form η which gives a real number for each pair of events. The bilinear form is sometimes called a spacetime metric, but since distinct events sometimes result in a zero value, unlike metrics in metric spaces of mathematics, the bilinear form is not a mathematical metric on spacetime.

World lines of particles/objects at constant speed are called geodesics. In special relativity these are straight lines in Minkowski space.

Often the time units are chosen such that the speed of light is represented by lines at a fixed angle, usually at 45 degrees, forming a cone with the vertical (time) axis. In general, curves in spacetime can be of three types:

  • light-like curves, having at each point the speed of light. They form a cone in spacetime, dividing it into two parts. The cone is three-dimensional in spacetime, appears as a line in drawings with two dimensions suppressed, and as a cone in drawings with one spatial dimension suppressed.
  • time-like curves, with a speed less than the speed of light. These curves must fall within a cone defined by light-like curves. In our definition above: world lines are time-like curves in spacetime.
  • space-like curves falling outside the light cone. Such curves may describe, for example, the length of a physical object. The circumference of a cylinder and the length of a rod are space-like curves.

At a given event on a world line, spacetime (Minkowski space) is divided into three parts.

  • The future of the given event is formed by all events that can be reached through time-like curves lying within the future light cone.
  • The past of the given event is formed by all events that can influence the event (that is, which can be connected by world lines within the past light cone to the given event).
  • The lightcone at the given event is formed by all events that can be connected through light rays with the event. When we observe the sky at night, we basically see only the past light cone within the entire spacetime.
  • Elsewhere is the region between the two light cones. Points in an observer's elsewhere are inaccessible to her/him; only points in the past can send signals to the observer. In ordinary laboratory experience, using common units and methods of measurement, it may seem that we look at the present, but in fact there is always a delay time for light to propagate. For example, we see the Sun as it was about 8 minutes ago, not as it is "right now." Unlike the present in Galilean/Newtonian theory, the elsewhere is thick; it is not a 3-dimensional volume but is instead a 4-dimensional spacetime region.
    • Included in "elsewhere" is the simultaneous hyperplane, which is defined for a given observer by a space which is hyperbolic-orthogonal to her/his world line. It is really three-dimensional, though it would be a 2-plane in the diagram because we had to throw away one dimension to make an intelligible picture. Although the light cones are the same for all observers at a given spacetime event, different observers, with differing velocities but coincident at the event (point) in the spacetime, have world lines that cross each other at an angle determined by their relative velocities, and thus they have different simultaneous hyperplanes.
    • The present often means the single spacetime event being considered.

Read more about this topic:  World Line

Famous quotes containing the words world, lines, special and/or relativity:

    She had been getting ready for her great journey to the horizons in search of people; it was important to all the world that she should find them and they find her, but she had been whipped like a cur dog, and run off down a back road after things.
    Zora Neale Hurston (1891–1960)

    We stand in the tumult of a festival.
    What festival? This loud, disordered mooch?
    These hospitaliers? These brute-like guests?
    These musicians dubbing at a tragedy,
    A-dub, a-dub, which is made up of this:
    That there are no lines to speak? There is no play.
    Wallace Stevens (1879–1955)

    If there is a special Hell for writers it would be in the forced contemplation of their own works, with all the misconceptions, the omissions, the failures that any finished work of art implies.
    John Dos Passos (1896–1970)

    By an application of the theory of relativity to the taste of readers, to-day in Germany I am called a German man of science, and in England I am represented as a Swiss Jew. If I come to be regarded as a bête noire the descriptions will be reversed, and I shall become a Swiss Jew for the Germans and a German man of science for the English!
    Albert Einstein (1879–1955)