Witt Group - Definition

Definition

Fix a field k of characteristic not two. All vector spaces will be assumed to be finite-dimensional. We say that two spaces equipped with symmetric bilinear forms are equivalent if one can be obtained from the other by adding a metabolic quadratic space, that is, zero or more copies of a hyperbolic plane, the non-degenerate two-dimensional symmetric bilinear form with a norm 0 vector. Each class is represented by the core form of a Witt decomposition.

The Witt group of k is the abelian group W(k) of equivalence classes of non-degenerate symmetric bilinear forms, with the group operation corresponding to the orthogonal direct sum of forms. It is additively generated by the classes of one-dimensional forms. Although classes may contain spaces of different dimension, the parity of the dimension is constant across a class and so rk : W(k) → Z/2Z is a homomorphism.

The elements of finite order in the Witt group have order a power of 2; the torsion subgroup is the kernel of the functorial map from W(k) to W(kpy), where kpy is the Pythagorean closure of k; it is generated by the Pfister forms. If k is not formally real, then the Witt group is torsion, with exponent a power of 2. The height of the field k is the exponent of the torsion in the Witt group, if this is finite, or ∞ otherwise.

Read more about this topic:  Witt Group

Famous quotes containing the word definition:

    I’m beginning to think that the proper definition of “Man” is “an animal that writes letters.”
    Lewis Carroll [Charles Lutwidge Dodgson] (1832–1898)

    Although there is no universal agreement as to a definition of life, its biological manifestations are generally considered to be organization, metabolism, growth, irritability, adaptation, and reproduction.
    The Columbia Encyclopedia, Fifth Edition, the first sentence of the article on “life” (based on wording in the First Edition, 1935)

    It’s a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was “mine.”
    Jane Adams (20th century)