Winglet - Non-planar Wingtip

Non-planar Wingtip

Non-planar wingtips are normally angled upwards in a polyhedral wing configuration, increasing the local dihedral near the wing tip. These provide the wake control benefit of winglets, with less parasitic drag penalty, if designed carefully. The non-planar wing tip is often swept back like a raked wingtip and may also be combined with a winglet. A winglet is also a special case of a non-planar wingtip.

Aircraft designers employed mostly planar wing designs with simple dihedral after World War II, prior to the introduction of winglets. With the wide acceptance of winglets in new sailplane designs of the 1990s, designers sought to further optimize the aerodynamic performance of their wingtip designs. Glider winglets were originally retrofitted directly to planar wings, with only a small, nearly right-angle, transition area. Once the performance of the winglet itself was optimized, attention was turned to the transition between the wing and winglet. A common application was tapering the transition area from the wing tip chord to the winglet chord and raking the transition area back, to place the winglet in the optimal position. If the tapered portion was canted upward, the winglet height could also be reduced. Eventually, designers employed multiple non-planar sections, each canting up at a greater angle, dispensing with the winglets entirely.

Closed surfaces at the end of winglets are a possible way to substantially decrease the wake vortices induced at the tips of a wing. An example of a closed-surface winglet is the Spiroid winglet, a design currently under development by Aviation Partners. These Spiroid winglets have also been flight tested on a Falcon 50 aircraft.

Non-planar wingtips (without winglets) are or will be employed on:

  • Schempp-Hirth Discus-2
  • Schempp-Hirth Duo Discus
  • Airbus A350-800 XWB
  • Airbus A350-900 XWB
  • Airbus A350-1000 XWB

Read more about this topic:  Winglet