Blade Element and Momentum Theory
The simplest model for horizontal axis wind turbine (HAWT) aerodynamics is blade element momentum (BEM) theory. The theory is based on the assumption that the flow at a given annulus does not affect the flow at adjacent annuli. This allows the rotor blade to be analyzed in sections, where the resulting forces are summed over all sections to get the overall forces of the rotor. The theory uses both axial and angular momentum balances to determine the flow and the resulting forces at the blade.
The momentum equations for the far field flow dictate that the thrust and torque will induce a secondary flow in the approaching wind. This in turn affects the flow geometry at the blade. The blade itself is the source of these thrust and torque forces. The force response of the blades is governed by the geometry of the flow, or better known as the angle of attack. Refer to the Airfoil article for more information on how airfoils create lift and drag forces at various angles of attack. This interplay between the far field momentum balances and the local blade forces requires one to solve the momentum equations and the airfoil equations simultaneously. Typically computers and numerical methods are employed to solve these models.
There is a lot of variation between different versions of BEM theory. First, one can consider the effect of wake rotation or not. Second, one can go further and consider the pressure drop induced in wake rotation. Third, the tangential induction factors can be solved with a momentum equation, an energy balance or orthognal geometric constraint; the latter a result of Biot-Savart law in vortex methods. These all lead to different set of equations that need to be solved. The simplest and most widely used equations are those that consider wake rotation with the momentum equation but ignore the pressure drop from wake rotation. Those equations are given below. a is the axial component of the induced flow, a' is the tangential component of the induced flow. is the solidity of the rotor, is the local inflow angle. and are the coefficient of normal force and the coefficient of tangential force respectively. Both these coefficients are defined with the resulting lift and drag coefficients of the airfoil:
Read more about this topic: Wind Turbine Aerodynamics
Famous quotes containing the words blade, element and/or theory:
“And a wandering beauty is a blade out of its scabbard.
You know how dangerous, gentlemen of threescore?
May you know it yet ten more.”
—John Crowe Ransom (18881974)
“Justice has its anger, my lord Bishop, and the wrath of justice is an element of progress. Whatever else may be said of it, the French Revolution was the greatest step forward by mankind since the coming of Christ. It was unfinished, I agree, but still it was sublime. It released the untapped springs of society; it softened hearts, appeased, tranquilized, enlightened, and set flowing through the world the tides of civilization. It was good. The French Revolution was the anointing of humanity.”
—Victor Hugo (18021885)
“The theory [before the twentieth century] ... was that all the jobs in the world belonged by right to men, and that only men were by nature entitled to wages. If a woman earned money, outside domestic service, it was because some misfortune had deprived her of masculine protection.”
—Rheta Childe Dorr (18661948)