Willam-Warnke Yield Function
In the original paper, the three-parameter Willam-Warnke yield function was expressed as
where is the first invariant of the stress tensor, is the second invariant of the deviatoric part of the stress tensor, is the yield stress in uniaxial compression, and is the Lode angle given by
The locus of the boundary of the stress surface in the deviatoric stress plane is expressed in polar coordinates by the quantity which is given by
where
The quantities and describe the position vectors at the locations and can be expressed in terms of as
The parameter in the model is given by
The Haigh-Westergaard representation of the Willam-Warnke yield condition can be written as
where
Read more about this topic: Willam-Warnke Yield Criterion
Famous quotes containing the words yield and/or function:
“Alas, why would you heap this care on me?
I am unfit for state and majesty.
I do beseech you take it not amiss,
I cannot nor I will not yield to you.”
—William Shakespeare (15641616)
“It is not the function of our Government to keep the citizen from falling into error; it is the function of the citizen to keep the Government from falling into error.”
—Robert H. [Houghwout] Jackson (18921954)