Wieferich@Home - Explanation of The Wieferich Property

Explanation of The Wieferich Property

The stronger version of Fermat's little theorem, which a Wieferich prime satisfies, is usually expressed as a congruence relation 2p − 1 ≡ 1 (mod p2). From the definition of the congruence relation on integers, it follows that this property is equivalent to the definition given at the beginning. Thus if a prime p satisfies this congruence, this prime divides the Fermat quotient . The following are two illustrative examples using the primes 11 and 1093:

For p = 11, we get which is 93 and leaves a remainder of 5 after division by 11, hence 11 is not a Wieferich prime. For p = 1093, we get or 530585362....3096656895 (320 intermediate digits omitted for clarity), which leaves a remainder of 0 after division by 1093 and thus 1093 is a Wieferich prime.

Read more about this topic:  Wieferich@Home

Famous quotes containing the words explanation of the, explanation of, explanation and/or property:

    The explanation of the propensity of the English people to portrait painting is to be found in their relish for a Fact. Let a man do the grandest things, fight the greatest battles, or be distinguished by the most brilliant personal heroism, yet the English people would prefer his portrait to a painting of the great deed. The likeness they can judge of; his existence is a Fact. But the truth of the picture of his deeds they cannot judge of, for they have no imagination.
    Benjamin Haydon (1786–1846)

    We live between two worlds; we soar in the atmosphere; we creep upon the soil; we have the aspirations of creators and the propensities of quadrupeds. There can be but one explanation of this fact. We are passing from the animal into a higher form, and the drama of this planet is in its second act.
    W. Winwood Reade (1838–1875)

    Auden, MacNeice, Day Lewis, I have read them all,
    Hoping against hope to hear the authentic call . . .
    And know the explanation I must pass is this
    MYou cannot light a match on a crumbling wall.
    Hugh MacDiarmid (1892–1978)

    No man acquires property without acquiring with it a little arithmetic, also.
    Ralph Waldo Emerson (1803–1882)