Whitehead's Point-free Geometry - Connection Theory

Connection Theory

In his 1929 Process and Reality, A. N. Whitehead proposed a different approach, one inspired by De Laguna (1922). Whitehead took as primitive the topological notion of "contact" between two regions, resulting in a primitive "connection relation" between events. Connection theory C is a first order theory that distills the first 12 of the 31 assumptions in chpt. 2 of Process and Reality into 6 axioms, C1-C6. C is a proper fragment of the theories proposed in Clarke (1981), who noted their mereological character. Theories that, like C, feature both inclusion and topological primitives, are called mereotopologies.

C has one primitive relation, binary "connection," denoted by the prefixed predicate letter C. That x is included in y can now be defined as xy ↔ ∀z. Unlike the case with inclusion spaces, connection theory enables defining "non-tangential" inclusion, a total order that enables the construction of abstractive classes. Gerla and Miranda (2008) argue that only thus can mereotopology unambiguously define a point.

The axioms C1-C6 below are, but for numbering, those of Def. 3.1 in Gerla and Miranda (2008).


  • C is reflexive. C.1.
C1.
  • C is symmetric. C.2.
C2.
  • C is extensional. C.11.
C3.
  • All regions have proper parts, so that C is an atomless theory. P.9.
C4.
  • Given any two regions, there is a region connected to both of them.
C5.
  • All regions have at least two unconnected parts. C.14.
C6.


A model of C is a connection space.

Following the verbal description of each axiom is the identifier of the corresponding axiom in Casati and Varzi (1999). Their system SMT (strong mereotopology) consists of C1-C3, and is essentially due to Clarke (1981). Any mereotopology can be made atomless by invoking C4, without risking paradox or triviality. Hence C extends the atomless variant of SMT by means of the axioms C5 and C6, suggested by chpt. 2 of Process and Reality. For an advanced and detailed discussion of systems related to C, see Roeper (1997).

Biacino and Gerla (1991) showed that every model of Clarke's theory is a Boolean algebra, and models of such algebras cannot distinguish connection from overlap. It is doubtful whether either fact is faithful to Whitehead's intent.

Read more about this topic:  Whitehead's Point-free Geometry

Famous quotes containing the words connection and/or theory:

    We should always remember that the work of art is invariably the creation of a new world, so that the first thing we should do is to study that new world as closely as possible, approaching it as something brand new, having no obvious connection with the worlds we already know. When this new world has been closely studied, then and only then let us examine its links with other worlds, other branches of knowledge.
    Vladimir Nabokov (1899–1977)

    Psychotherapy—The theory that the patient will probably get well anyway, and is certainly a damned ijjit.
    —H.L. (Henry Lewis)