In mathematics, specifically in topology, a surface is a two-dimensional topological manifold. The most familiar examples are those that arise as the boundaries of solid objects in ordinary three-dimensional Euclidean space R3 — for example, the surface of a ball. On the other hand, there are surfaces, such as the Klein bottle, that cannot be embedded in three-dimensional Euclidean space without introducing singularities or self-intersections.
To say that a surface is "two-dimensional" means that, about each point, there is a coordinate patch on which a two-dimensional coordinate system is defined. For example, the surface of the Earth is (ideally) a two-dimensional sphere, and latitude and longitude provide two-dimensional coordinates on it (except at the poles and along the 180th meridian).
The concept of surface finds application in physics, engineering, computer graphics, and many other disciplines, primarily in representing the surfaces of physical objects. For example, in analyzing the aerodynamic properties of an airplane, the central consideration is the flow of air along its surface.
Read more about Surface: Definitions and First Examples, Extrinsically Defined Surfaces and Embeddings, Construction From Polygons, Connected Sums, Closed Surfaces, Surfaces in Geometry
Famous quotes containing the word surface:
“It was a pretty game, played on the smooth surface of the pond, a man against a loon.”
—Henry David Thoreau (18171862)
“And yet we constantly reclaim some part of that primal spontaneity through the youngest among us, not only through their sorrow and anger but simply through everyday discoveries, life unwrapped. To see a child touch the piano keys for the first time, to watch a small body slice through the surface of the water in a clean dive, is to experience the shock, not of the new, but of the familiar revisited as though it were strange and wonderful.”
—Anna Quindlen (b. 1952)
“Weve forgotten what its like not to be able to reach the light switch. Weve forgotten a lot of the monsters that seemed to live in our room at night. Nevertheless, those memories are still there, somewhere inside us, and can sometimes be brought to the surface by events, sights, sounds, or smells. Children, though, can never have grown-up feelings until theyve been allowed to do the growing.”
—Fred Rogers (20th century)