Well-quasi-ordering - Properties of Wqos

Properties of Wqos

  • Given a quasiordering the quasiordering defined by is well-founded if and only if is a wqo.
  • A quasiordering is a wqo if and only if the corresponding partial order (obtained by quotienting by ) has no infinite descending sequences or antichains. (This can be proved using a Ramsey argument as above)

Read more about this topic:  Well-quasi-ordering

Famous quotes containing the words properties of and/or properties:

    The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.
    John Locke (1632–1704)

    The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.
    John Locke (1632–1704)