Weak Solution - General Case

General Case

The general idea which follows from this example is that, when solving a differential equation in u, one can rewrite it using a so-called test function, such that whatever derivatives in u show up in the equation, they are "transferred" via integration by parts to . In this way one obtains solutions to the original equation which are not necessarily differentiable.

The approach illustrated above works for equations more general than the wave equation. Indeed, consider a linear differential operator in an open set W in Rn

where the multi-index (α1, α2, ..., αn) varies over some finite set in Nn and the coefficients are smooth enough functions of x.

The differential equation P(x, ∂)u(x) = 0 can, after being multiplied by a smooth test function with compact support in W and integrated by parts, be written as

where the differential operator Q(x, ∂) is given by the formula

The number

shows up because one needs α1 + α2 + ... + αn integrations by parts to transfer all the partial derivatives from u to in each term of the differential equation, and each integration by parts entails a multiplication by −1.

The differential operator Q(x, ∂) is the formal adjoint of P(x, ∂) (see also adjoint of an operator for the concept of adjoint).

In summary, if the original (strong) problem was to find a |α|-times differentiable function u defined on the open set W such that

(a so-called strong solution), then an integrable function u would be said to be a weak solution if

for every smooth function with compact support in W.

Read more about this topic:  Weak Solution

Famous quotes containing the words general and/or case:

    There is a mortifying experience in particular, which does not fail to wreak itself also in the general history; I mean “the foolish face of praise,” the forced smile which we put on in company where we do not feel at ease, in answer to conversation which does not interest us. The muscles, not spontaneously moved but moved, by a low usurping wilfulness, grow tight about the outline of the face, with the most disagreeable sensation.
    Ralph Waldo Emerson (1803–1882)

    A woman’s whole life is a history of the affections. The heart is her world: it is there her ambition strives for empire; it is there her avarice seeks for hidden treasures. She sends forth her sympathies on adventure; she embarks her whole soul on the traffic of affection; and if shipwrecked, her case is hopeless—for it is a bankruptcy of the heart.
    Washington Irving (1783–1859)