Wave Shoaling - Mathematics

Mathematics

For non-breaking waves, the energy flux associated with the wave motion, which is the product of the wave energy density with the group velocity, between two wave rays is a conserved quantity (i.e. a constant when following the energy of a wave packet from one location to another). Under stationary conditions the total energy transport must be constant along the wave ray,

where s is the co-ordinate along the wave ray and is the energy flux per unit crest length. A decrease in group speed must be compensated by an increase in energy density E. This can be formulated as a shoaling coefficient relative to the wave height in deep water.

Let us follow Phillips (1977) and Mei (1989) and denote the phase of a wave ray as

.

The local wave number vector is the gradient of the phase function,

,

and the angular frequency is proportional to its local rate of change,

.

Simplifying to one dimension and cross-differentiating it is now easily seen that the above definitions indicate simply that the rate of change of wavenumber is balanced by the convergence of the frequency along a ray;

.

Assuming stationary conditions, this implies that wave crests are conserved and the frequency must remain constant along a wave ray as . As waves enter shallower waters, the decrease in group velocity caused by the reduction in water depth leads to a reduction in wave length because the nondispersive shallow water limit of the dispersion relation for the wave phase speed,

dictates that

,

i.e., a steady increase in k (decrease in ) as the phase speed decreases under constant .

Read more about this topic:  Wave Shoaling

Famous quotes containing the word mathematics:

    Why does man freeze to death trying to reach the North Pole? Why does man drive himself to suffer the steam and heat of the Amazon? Why does he stagger his mind with the mathematics of the sky? Once the question mark has arisen in the human brain the answer must be found, if it takes a hundred years. A thousand years.
    Walter Reisch (1903–1963)

    In mathematics he was greater
    Than Tycho Brahe, or Erra Pater:
    For he, by geometric scale,
    Could take the size of pots of ale;
    Resolve, by sines and tangents straight,
    If bread and butter wanted weight;
    And wisely tell what hour o’ th’ day
    The clock doth strike, by algebra.
    Samuel Butler (1612–1680)