Wastewater - Wastewater Quality Indicators

Wastewater Quality Indicators

Any oxidizable material present in a natural waterway or in an industrial wastewater will be oxidized both by biochemical (bacterial) or chemical processes. The result is that the oxygen content of the water will be decreased. Basically, the reaction for biochemical oxidation may be written as:

Oxidizable material + bacteria + nutrient + O2 → CO2 + H2O + oxidized inorganics such as NO3- or SO4--

Oxygen consumption by reducing chemicals such as sulfides and nitrites is typified as follows:

S-- + 2 O2 → SO4--
NO2- + ½ O2 → NO3-

Since all natural waterways contain bacteria and nutrients, almost any waste compounds introduced into such waterways will initiate biochemical reactions (such as shown above). Those biochemical reactions create what is measured in the laboratory as the Biochemical oxygen demand (BOD). Such chemicals are also liable to be broken down using strong oxidizing agents and these chemical reactions create what is measured in the laboratory as the Chemical oxygen demand (COD). Both the BOD and COD tests are a measure of the relative oxygen-depletion effect of a waste contaminant. Both have been widely adopted as a measure of pollution effect. The BOD test measures the oxygen demand of biodegradable pollutants whereas the COD test measures the oxygen demand of oxidizable pollutants.

The so-called 5-day BOD measures the amount of oxygen consumed by biochemical oxidation of waste contaminants in a 5-day period. The total amount of oxygen consumed when the biochemical reaction is allowed to proceed to completion is called the Ultimate BOD. Because the Ultimate BOD is so time consuming, the 5-day BOD has been almost universally adopted as a measure of relative pollution effect.

There are also many different COD tests of which the 4-hour COD is probably the most common.

There is no generalized correlation between the 5-day BOD and the ultimate BOD. Similarly there is no generalized correlation between BOD and COD. It is possible to develop such correlations for specific waste contaminants in a specific wastewater stream but such correlations cannot be generalized for use with any other waste contaminants or wastewater streams. This is because the composition of any wastewater stream is different. As an example an effluent consisting of a solution of simple sugars that might discharge from a confectionery factory is likely to have organic components that degrade very quickly. In such a case, the 5 day BOD and the ultimate BOD would be very similar since there would be very little organic material left after 5 days. However a final effluent of a sewage treatment works serving a large industrialised area might have a discharge where the ultimate BOD was much greater than the 5 day BOD because much of the easily degraded material would have been removed in the sewage treatment process and many industrial processes discharge difficult to degrade organic molecules.

The laboratory test procedures for the determining the above oxygen demands are detailed in many standard texts. American versions include the "Standard Methods For the Examination Of Water and Wastewater"

Read more about this topic:  Wastewater

Famous quotes containing the word quality:

    The Great Society is a place where every child can find knowledge to enrich his mind and to enlarge his talents.... It is a place where the city of man serves not only the needs of the body and the demands of commerce but the desire for beauty and the hunger for community.... It is a place where men are more concerned with the quality of their goals than the quantity of their goods.
    Lyndon Baines Johnson (1908–1973)