Voltage Regulator - Measures of Regulator Quality

Measures of Regulator Quality

The output voltage can only be held roughly constant; the regulation is specified by two measurements:

  • load regulation is the change in output voltage for a given change in load current (for example: "typically 15 mV, maximum 100 mV for load currents between 5 mA and 1.4 A, at some specified temperature and input voltage").
  • line regulation or input regulation is the degree to which output voltage changes with input (supply) voltage changes - as a ratio of output to input change (for example "typically 13 mV/V"), or the output voltage change over the entire specified input voltage range (for example "plus or minus 2% for input voltages between 90 V and 260 V, 50-60 Hz").

Other important parameters are:

  • Temperature coefficient of the output voltage is the change with temperature (perhaps averaged over a given temperature range).
  • Initial accuracy of a voltage regulator (or simply "the voltage accuracy") reflects the error in output voltage for a fixed regulator without taking into account temperature or aging effects on output accuracy.
  • Dropout voltage is the minimum difference between input voltage and output voltage for which the regulator can still supply the specified current. A low drop-out (LDO) regulator is designed to work well even with an input supply only a volt or so above the output voltage. The input-output differential at which the voltage regulator will no longer maintain regulation is the dropout voltage. Further reduction in input voltage will result in reduced output voltage. This value is dependent on load current and junction temperature.
  • Absolute maximum ratings are defined for regulator components, specifying the continuous and peak output currents that may be used (sometimes internally limited), the maximum input voltage, maximum power dissipation at a given temperature, etc.
  • Output noise (thermal white noise) and output dynamic impedance may be specified as graphs versus frequency, while output ripple noise (mains "hum" or switch-mode "hash" noise) may be given as peak-to-peak or RMS voltages, or in terms of their spectra.
  • Quiescent current in a regulator circuit is the current drawn internally, not available to the load, normally measured as the input current while no load is connected (and hence a source of inefficiency; some linear regulators are, surprisingly, more efficient at very low current loads than switch-mode designs because of this).
  • Transient response is the reaction of a regulator when a (sudden) change of the load current (called the load transient) or input voltage (called the line transient) occurs. Some regulators will tend to oscillate or have a slow response time which in some cases might lead to undesired results. This value is different from the regulation parameters, as that is the stable situation definition. The transient response shows the behaviour of the regulator on a change. This data is usually provided in the technical documentation of a regulator and is also dependent on output capacitance.
  • Mirror-image insertion protection means that a regulator is designed for use when a voltage, usually not higher than the maximum input voltage of the regulator, is applied to its output pin while its input terminal is at a low voltage, volt-free or grounded. Some regulators can continuously withstand this situation; others might only manage it for a limited time such as 60 seconds, as usually specified in the datasheet. This situation can occur when a three terminal regulator is incorrectly mounted for example on a PCB, with the output terminal connected to the unregulated DC input and the input connected to the load. Mirror-image insertion protection is also important when a regulator circuit is used in battery charging circuits, when external power fails or is not turned on and the output terminal remains at battery voltage.

Read more about this topic:  Voltage Regulator

Famous quotes containing the words measures of, measures and/or quality:

    To have the fear of God before our eyes, and, in our mutual dealings with each other, to govern our actions by the eternal measures of right and wrong:MThe first of these will comprehend the duties of religion;Mthe second, those of morality, which are so inseparably connected together, that you cannot divide these two tables ... without breaking and mutually destroying them both.
    Laurence Sterne (1713–1768)

    ... moral certainty is certainty which is sufficient to regulate our behaviour, or which measures up to the certainty we have on matters relating to the conduct of life which we never normally doubt, though we know that it is possible, absolutely speaking, that they may be false.
    René Descartes (1596–1650)

    To understand the true quality of people, you must look into their minds, and examine their pursuits and aversions.
    Marcus Aurelius Antoninus (121–80)