Vitelliform Macular Dystrophy - Pathophysiology

Pathophysiology

Mutations in the RDS and VMD2 genes cause vitelliform macular dystrophy. Mutations in the VMD2 gene are responsible for Best disease. Changes in either the VMD2 or RDS gene can cause the adult-onset form of vitelliform macular dystrophy; however, fewer than a quarter of cases result from mutations in these two genes. In most cases, the cause of the adult-onset form is unknown.

The VMD2 gene provides instructions for making a protein called bestrophin. Although its exact function is uncertain, this protein likely acts as a channel that controls the movement of negatively charged chlorine atoms (chloride ions) into or out of cells in the retina. Mutations in the VMD2 gene probably lead to the production of an abnormally shaped channel that cannot regulate the flow of chloride. Researchers have not determined how these malfunctioning channels are related to the buildup of lipofuscin in the macula and progressive vision loss.

The RDS gene provides instructions for making a protein called peripherin. This protein is essential for the normal function of light-sensing (photoreceptor) cells in the retina. Mutations in the RDS gene disrupt the structures in these cells that contain light-sensing pigments, leading to vision loss. It is unclear why RDS mutations affect only central vision in people with adult-onset vitelliform macular dystrophy.

Read more about this topic:  Vitelliform Macular Dystrophy