Process
The input for the data sets used in the visual analytics process are heterogeneous data sources (i.e., the internet, newspapers, books, scientific experiments, expert systems). From these rich sources, the data sets S = S1, ..., Sm are chosen, whereas each Si, i ∈ (1, ..., m) consists of attributes Ai1, ..., Aik. The goal or output of the process is insight I. Insight is either directly obtained from the set of created visualizations V or through confirmation of hypotheses H as the results of automated analysis methods. This formalization of the visual analytics process is illustrated in the following figure. Arrows represent the transitions from one set to another one.
More formal the visual analytics process is a transformation F: S → I, whereas F is a concatenation of functions f ∈ {DW, VX, HY, UZ} defined as follows:
DW describes the basic data pre-processing functionality with DW : S → S and W ∈ {T, C, SL, I} including data transformation functions DT, data cleaning functions DC, data selection functions DSL and data integration functions DI that are needed to make analysis functions applicable to the data set.
VW, W ∈ {S, H} symbolizes the visualization functions, which are either functions visualizing data VS : S → V or functions visualizing hypotheses VH : H → V.
HY, Y ∈ {S, V} represents the hypotheses generation process. We distinguish between functions that generate hyphotheses from data HS : S → H and functions that generate hypotheses from visualizations HV : V → H.
Moreover, user interactions UZ, Z ∈ {V, H, CV, CH} are an integral part of the visual analytics process. User interactions can either effect only visualizations UV : V → V (i.e., selecting or zooming), or can effect only hypotheses UH : H → H by generating a new hypotheses from given ones. Furthermore, insight can be concluded from visualizations UCV : V → I or from hypotheses UCH : H → I.
The typical data pre-processing applying data cleaning, data integration and data transformation functions is defined as DP = DT(DI(DC(S1, ..., Sn))). After the pre-processing step either automated analysis methods HS = {fs1, ..., fsq} (i.e., statistics, data mining, etc.) or visualization methods VS : S → V, VS = {fv1, ..., fvs} are applied to the data, in order to reveal patterns as shown in the figure above.
In general the following paradigm is used to process the data:
Analyse First – Show the Important – Zoom, Filter and Analyse Further – Details on Demand
Read more about this topic: Visual Analytics
Famous quotes containing the word process:
“A designer who is not also a couturier, who hasnt learned the most refined mysteries of physically creating his models, is like a sculptor who gives his drawings to another man, an artisan, to accomplish. For him the truncated process of creating will always be an interrupted act of love, and his style will bear the shame of it, the impoverishment.”
—Yves Saint Laurent (b. 1936)
“We tend to be so bombarded with information, and we move so quickly, that theres a tendency to treat everything on the surface level and process things quickly. This is antithetical to the kind of openness and perception you have to have to be receptive to poetry. ... poetry seems to exist in a parallel universe outside daily life in America.”
—Rita Dove (b. 1952)
“The process of education in the oldest profession in the world is like any other educational process, in that it requires time and effort and patience; it can only be acquired by taking one step at a time, though the steps become accelerated after the first few.”
—Madeleine [Blair], U.S. prostitute and madam. Madeleine, ch. 4 (1919)