Viscosity Solution

In mathematics, the viscosity solution concept was introduced in the early 1980s by Pierre-Louis Lions and Michael Crandall as a generalization of the classical concept of what is meant by a 'solution' to a partial differential equation (PDE). It has been found that the viscosity solution is the natural solution concept to use in many applications of PDE's, including for example first order equations arising in optimal control (the Hamilton-Jacobi equation), differential games (the Isaacs equation) or front evolution problems, as well as second-order equations such as the ones arising in stochastic optimal control or stochastic differential games.

The classical concept was that a PDE

over a domain has a solution if we can find a function u(x) continuous and differentiable over the entire domain such that, satisfy the above equation at every point.

If a scalar equation is degenerate elliptic (defined below), one can define a type of weak solution called viscosity solution. Under the viscosity solution concept, u need not be everywhere differentiable. There may be points where either or does not exist and yet u satisfies the equation in an appropriate sense. The definition allows only for certain kind of singularities, so that existence, uniqueness, and stability under uniform limits, hold for a large class of equations.

Read more about Viscosity Solution:  Definition, Basic Properties, History

Famous quotes containing the word solution:

    The truth of the thoughts that are here set forth seems to me unassailable and definitive. I therefore believe myself to have found, on all essential points, the final solution of the problems. And if I am not mistaken in this belief, then the second thing in which the value of this work consists is that it shows how little is achieved when these problems are solved.
    Ludwig Wittgenstein (1889–1951)