Direct Problem
Given an initial point (φ1, L1) and initial azimuth, α1, and a distance, s, along the geodesic the problem is to find the end point (φ2, L2) and azimuth, α2.
Start by calculating the following:
Then, using an initial value, iterate the following equations until there is no significant change in σ:
Once σ is obtained to sufficient accuracy evaluate:
If the initial point is at the North or South pole then the first equation is indeterminate. If the initial azimuth is due East or West then the second equation is indeterminate. If a double valued atan2 type function is used then these values are usually handled correctly.
Read more about this topic: Vincenty's Formulae
Famous quotes containing the words direct and/or problem:
“One merit in Carlyle, let the subject be what it may, is the freedom of prospect he allows, the entire absence of cant and dogma. He removes many cartloads of rubbish, and leaves open a broad highway. His writings are all unfenced on the side of the future and the possible. Though he does but inadvertently direct our eyes to the open heavens, nevertheless he lets us wander broadly underneath, and shows them to us reflected in innumerable pools and lakes.”
—Henry David Thoreau (18171862)
“... your problem is your role models were models.”
—Jane Wagner (b. 1935)