Vibration - Multiple Degrees of Freedom Systems and Mode Shapes

Multiple Degrees of Freedom Systems and Mode Shapes

The simple mass–spring damper model is the foundation of vibration analysis, but what about more complex systems? The mass–spring–damper model described above is called a single degree of freedom (SDOF) model since we have assumed the mass only moves up and down. In the case of more complex systems we need to discretize the system into more masses and allow them to move in more than one direction – adding degrees of freedom. The major concepts of multiple degrees of freedom (MDOF) can be understood by looking at just a 2 degree of freedom model as shown in the figure.

The equations of motion of the 2DOF system are found to be:


m_1 \ddot{x_1} + { (c_1+c_2) } \dot{x_1} - { c_2 } \dot{x_2}+ { (k_1+k_2) } x_1 -{ k_2 } x_2= f_1,

m_2 \ddot{x_2} - { c_2 } \dot{x_1}+ { (c_2+c_3) } \dot{x_2} - { k_2 } x_1+ { (k_2+k_3) } x_2 = f_2. \!

We can rewrite this in matrix format:


\begin{bmatrix}m_1 & 0\\ 0 & m_2\end{bmatrix}\begin{Bmatrix}\ddot{x_1}\\ \ddot{x_2}\end{Bmatrix}+\begin{bmatrix}c_1+c_2 & -c_2\\ -c_2 & c_2+c_3\end{bmatrix}\begin{Bmatrix}\dot{x_1}\\ \dot{x_2}\end{Bmatrix}+\begin{bmatrix}k_1+k_2 & -k_2\\ -k_2 & k_2+k_3\end{bmatrix}\begin{Bmatrix} x_1\\ x_2\end{Bmatrix}=\begin{Bmatrix} f_1\\ f_2\end{Bmatrix}.

A more compact form of this matrix equation can be written as:


\begin{bmatrix}M\end{bmatrix}\begin{Bmatrix}\ddot{x}\end{Bmatrix}+\begin{bmatrix}C\end{bmatrix}\begin{Bmatrix}\dot{x}\end{Bmatrix}+\begin{bmatrix}K\end{bmatrix}\begin{Bmatrix} x\end{Bmatrix}=\begin{Bmatrix} f \end{Bmatrix}

where and are symmetric matrices referred respectively as the mass, damping, and stiffness matrices. The matrices are NxN square matrices where N is the number of degrees of freedom of the system.

In the following analysis we will consider the case where there is no damping and no applied forces (i.e. free vibration). The solution of a viscously damped system is somewhat more complicated.

This differential equation can be solved by assuming the following type of solution:


\begin{Bmatrix} x\end{Bmatrix}=\begin{Bmatrix} X\end{Bmatrix}e^{i\omega t}.

Note: Using the exponential solution of is a mathematical trick used to solve linear differential equations. If we use Euler's formula and take only the real part of the solution it is the same cosine solution for the 1 DOF system. The exponential solution is only used because it easier to manipulate mathematically.

The equation then becomes:

Since cannot equal zero the equation reduces to the following.

Read more about this topic:  Vibration

Famous quotes containing the words multiple, degrees, freedom, systems, mode and/or shapes:

    Combining paid employment with marriage and motherhood creates safeguards for emotional well-being. Nothing is certain in life, but generally the chances of happiness are greater if one has multiple areas of interest and involvement. To juggle is to diminish the risk of depression, anxiety, and unhappiness.
    Faye J. Crosby (20th century)

    No sooner met but they looked; no sooner looked but they loved; no sooner loved but they sighed; no sooner sighed but they asked one another the reason; no sooner knew the reason but they sought the remedy; and in these degrees have they made a pair of stairs to marriage, which they will climb incontinent, or else be incontinent before marriage.
    William Shakespeare (1564–1616)

    There is but one love of Jesus, as there is but one person in the poor—Jesus. We take vows of chastity to love Christ with undivided love; to be able to love him with undivided love we take a vow of poverty which frees us from all material possessions, and with that freedom we can love him with undivided love, and from this vow of undivided love we surrender ourselves totally to him in the person who takes his place.
    Mother Teresa (b. 1910)

    No civilization ... would ever have been possible without a framework of stability, to provide the wherein for the flux of change. Foremost among the stabilizing factors, more enduring than customs, manners and traditions, are the legal systems that regulate our life in the world and our daily affairs with each other.
    Hannah Arendt (1906–1975)

    Young children learn in a different manner from that of older children and adults, yet we can teach them many things if we adapt our materials and mode of instruction to their level of ability. But we miseducate young children when we assume that their learning abilities are comparable to those of older children and that they can be taught with materials and with the same instructional procedures appropriate to school-age children.
    David Elkind (20th century)

    No, no; but as in my idolatry
    I said to all my profane mistresses,
    Beauty, of pity, foulness only is
    A sign of rigour: so I say to thee,
    To wicked spirits are horrid shapes assign’d,
    This beauteous form assures a piteous mind.
    John Donne (1572–1631)