Algebraic Solution For Vertical Angles
In the figure, assume the measure of Angle A = x. When two adjacent angles form a straight line, they are supplementary. Therefore, the measure of Angle C = 180 − x. Similarly, the measure of Angle D = 180 − x. Both Angle C and Angle D have measures equal to 180 - x and are congruent. Since Angle B is supplementary to both Angles C and D, either of these angle measures may be used to determine the measure of Angle B. Using the measure of either Angle C or Angle D we find the measure of Angle B = 180 - (180 - x) = 180 - 180 + x = x. Therefore, both Angle A and Angle B have measures equal to x and are equal in measure.
Read more about this topic: Vertical Angles
Famous quotes containing the words algebraic, solution and/or vertical:
“I have no scheme about it,no designs on men at all; and, if I had, my mode would be to tempt them with the fruit, and not with the manure. To what end do I lead a simple life at all, pray? That I may teach others to simplify their lives?and so all our lives be simplified merely, like an algebraic formula? Or not, rather, that I may make use of the ground I have cleared, to live more worthily and profitably?”
—Henry David Thoreau (18171862)
“There is a lot of talk now about metal detectors and gun control. Both are good things. But they are no more a solution than forks and spoons are a solution to world hunger.”
—Anna Quindlen (b. 1953)
“I tell you, hopeless grief is passionless;
That only men incredulous of despair,
Half-taught in anguish, through the midnight air
Beat upward to Gods throne in loud access
Of shrieking and reproach. Full desertness,
In souls as countries, lieth silent-bare
Under the blanching, vertical eye-glare
Of the absolute Heavens.”
—Elizabeth Barrett Browning (18061861)