Variety (universal Algebra) - Category Theory

Category Theory

If A is a finitary algebraic category, then the forgetful functor

is monadic. Even more, it is strictly monadic, in that the comparison functor

is an isomorphism (and not just an equivalence). Here, is the Eilenberg–Moore category on . In general, one says a category is an algebraic category if it is monadic over . This is a more general notion than "finitary algebraic category" (the notion of "variety" used in universal algebra) because it admits such categories as CABA (complete atomic Boolean algebras) and CSLat (complete semilattices) whose signatures include infinitary operations. In those two cases the signature is large, meaning that it forms not a set but a proper class, because its operations are of unbounded arity. The algebraic category of sigma algebras also has infinitary operations, but their arity is countable whence its signature is small (forms a set).

Read more about this topic:  Variety (universal Algebra)

Famous quotes containing the words category and/or theory:

    The truth is, no matter how trying they become, babies two and under don’t have the ability to make moral choices, so they can’t be “bad.” That category only exists in the adult mind.
    Anne Cassidy (20th century)

    There could be no fairer destiny for any physical theory than that it should point the way to a more comprehensive theory in which it lives on as a limiting case.
    Albert Einstein (1879–1955)