UNSW School of Surveying and Spatial Information Systems - Research

Research

Since the 1960s, the School has focused on geodesy research. Other past research areas have included photogrammetry, remote sensing, network adjustments, industrial metrology and cadastral systems.

From 1984, the School made important contributions to the development of high accuracy (centimetre-level) positioning algorithms suitable for surveying and geodesy applications. In the early 1990s, all GPS-related research was organised under the Satellite Navigation and Positioning (SNAP) group. From 2004, this also included other wireless and inertial positioning technologies, and space techniques such as Interferometric Synthetic Aperture Radar (InSAR). The School’s research areas have extended to GNSS research, aspects of signal processing for the design of GNSS receivers, integrated navigation systems, new designs for terrestrial-based navigation systems and a variety of positioning/navigation applications.

The School has Australia’s strongest academic research group working in the areas of positioning/navigation and satellite radar remote sensing, with research strengths in Navigation and Earth Observation. This combines all the technologies and applications dealing with GNSS, inertial and wireless positioning systems, with ‘metric’ (involving precise geometry-based measurements) remote sensing techniques such as InSAR, aerial and satellite digital imagery, LiDAR and terrestrial laser scanning, and modern geodesy.

Navigation research includes GPS/GNSS receiver design, data and signal processing algorithms, inertial navigation technologies and data fusion algorithms, other wireless positioning systems including those based on telecommunications (mobile telephony, WiFi, BlueTooth, RFID, vehicle-to-vehicle) as well as dedicated systems such as Locata Corporation, and their optimal integration to support a range of applications from farm and mining machinery automation and robotics, to precise navigation, georeferencing mapping and imaging systems (terrestrial, airborne, or spaceborne), and personal navigation.

The School’s Earth Observation research refers to a subset of remote sensing technologies traditionally linked to geodesy, photogrammetry and surveying. These include InSAR satellite radar remote sensing; digital photogrammetry using terrestrial, aerial or satellite cameras; airborne and terrestrial laser scanning; and geodesy.

This Navigation and Earth Observation research is organised across broad research themes

  • CORS Network Operations & High-Accuracy GNSS Algorithms
  • Radar Remote Sensing & Engineering Deformation Monitoring
  • Multi-Sensor Integration Algorithms & Applications
  • New Positioning Technologies & Applications
  • GNSS Receiver Design & Signal Processing

Research activities and unique strengths include:

  • GPS algorithms for precise positioning over long baselines, real-time carrier phase-based positioning, and network-based CORS (Continuously Operating Reference Station) designs (e.g. initiating the establishment of SydNet, from which today’s CORSnet-NSW has evolved).
  • Development of the ‘Namuru’, a fully functional GNSS receiver that is the basis of research into future GNSS both within Australia and overseas. In 2010 the Namuru was flown on a sounding rocket by the German Space Agency.
  • Signal processing expertise for multipath analysis, RF interference detection and self-interference mitigation, signal strength measurement, and structural deformation monitoring.
  • Largest number of student prize winners at the annual US Institute of Navigation’s GNSS symposium – second only to the Dept of Geomatics, University of Calgary (Canada),
  • Operating Australia’s only permanent Galileo tracking receiver as part of a global network, as well as a GNSS station in the CORSnet-NSW.
  • Assisting Australian company Locata with research on their groundbreaking alternative technologies to replicate GNSS performance indoors and in situations where GNSS signals fail.
  • Expertise in SAR-DEM generation, emergency flood mapping, and ground deformation monitoring using differential InSAR.
  • Research into LiDAR wave form analysis, DEM generation, and biomass estimation.
  • Addressing the requirements for indoor, UAV and vehicle-to-vehicle positioning, by conducting research into the use of a variety of technologies, on their own or in multi-sensor integrated systems – including mobile phone signals, WiFi, assisted-GNSS, vision and inertial sensors.

In July 2010, the Australian Government’s Australian Space Research Program granted $4.6M for the SAR Formation Flying project – led by the School in a consortium of university and private sector partners and worth more than $9.6M with in-kind contributions. And in November 2010 UNSW opened the Australian Centre for Space Engineering, in which the School is a major contributor.

Read more about this topic:  UNSW School Of Surveying And Spatial Information Systems

Famous quotes containing the word research:

    I did my research and decided I just had to live it.
    Karina O’Malley, U.S. sociologist and educator. As quoted in the Chronicle of Higher Education, p. A5 (September 16, 1992)

    If politics is the art of the possible, research is surely the art of the soluble. Both are immensely practical-minded affairs.
    Peter B. Medawar (1915–1987)

    Feeling that you have to be the perfect parent places a tremendous and completely unnecessary burden on you. If we’ve learned anything from the past half-century’s research on child development, it’s that children are remarkably resilient. You can make lots of mistakes and still wind up with great kids.
    Lawrence Kutner (20th century)