Universal Enveloping Algebra - Universal Property

Universal Property

Let X be any Lie algebra over K. Given a unital associative K-algebra U and a Lie algebra homomorphism: h: XUL, (notation as above) we say that U is the universal enveloping algebra of X if it satisfies the following universal property: for any unital associative K-algebra A and Lie algebra homomorphism f: XAL there exists a unique unital algebra homomorphism g: UA such that: f(-) = gL (h(-)).

This is the universal property expressing that the functor sending X to its universal enveloping algebra is left adjoint to the functor sending a unital associative algebra A to its Lie algebra AL.

Read more about this topic:  Universal Enveloping Algebra

Famous quotes containing the words universal and/or property:

    Not because Socrates has said it, but because it is really in my nature, and perhaps a little more than it should be, I look upon all humans as my fellow-citizens, and would embrace a Pole as I would a Frenchman, subordinating this national tie to the common and universal one.
    Michel de Montaigne (1533–1592)

    The rights and interests of the laboring man will be protected and cared for, not by the labor agitators, but by the Christian men to whom God in His infinite wisdom has given control of the property interests of the country.
    George Baer (1842–1914)