Arbitrary Unions
The most general notion is the union of an arbitrary collection of sets, sometimes called an infinitary union. If M is a set whose elements are themselves sets, then x is an element of the union of M if and only if there is at least one element A of M such that x is an element of A. In symbols:
That this union of M is a set no matter how large a set M itself might be, is the content of the axiom of union in axiomatic set theory.
This idea subsumes the preceding sections, in that (for example) A ∪ B ∪ C is the union of the collection {A,B,C}. Also, if M is the empty collection, then the union of M is the empty set. The analogy between finite unions and logical disjunction extends to one between arbitrary unions and existential quantification.
Read more about this topic: Union (set Theory)
Famous quotes containing the words arbitrary and/or unions:
“... no one who has not been an integral part of a slaveholding community, can have any idea of its abominations.... even were slavery no curse to its victims, the exercise of arbitrary power works such fearful ruin upon the hearts of slaveholders, that I should feel impelled to labor and pray for its overthrow with my last energies and latest breath.”
—Angelina Grimké (18051879)
“When Hitler attacked the Jews ... I was not a Jew, therefore, I was not concerned. And when Hitler attacked the Catholics, I was not a Catholic, and therefore, I was not concerned. And when Hitler attacked the unions and the industrialists, I was not a member of the unions and I was not concerned. Then, Hitler attacked me and the Protestant churchand there was nobody left to be concerned.”
—Martin Niemller (18921984)