Uniform Continuity - Generalization To Uniform Spaces

Generalization To Uniform Spaces

Just as the most natural and general setting for continuity is topological spaces, the most natural and general setting for the study of uniform continuity are the uniform spaces. A function f : XY between uniform space is called uniformly continuous if for every entourage V in Y there exists an entourage U in X such that for every (x1, x2) in U we have (f(x1), f(x2)) in V.

In this setting, it is also true that uniformly continuous maps transform Cauchy sequences into Cauchy sequences and that continuous maps on compact uniform spaces are automatically uniformly continuous.

Each compact Hausdorff space possesses exactly one uniform structure compatible with the topology. A consequence is a generalisation of the Heine-Cantor theorem: each continuous function from a compact Hausdorff space to a uniform space is uniformly continuous.

Read more about this topic:  Uniform Continuity

Famous quotes containing the words uniform and/or spaces:

    When a uniform exercise of kindness to prisoners on our part has been returned by as uniform severity on the part of our enemies, you must excuse me for saying it is high time, by other lessons, to teach respect to the dictates of humanity; in such a case, retaliation becomes an act of benevolence.
    Thomas Jefferson (1743–1826)

    Deep down, the US, with its space, its technological refinement, its bluff good conscience, even in those spaces which it opens up for simulation, is the only remaining primitive society.
    Jean Baudrillard (b. 1929)