Unified Field Theory - Modern Progress

Modern Progress

In 1963 American physicist Sheldon Glashow proposed that the weak nuclear force and electricity and magnetism could arise from a partially unified electroweak theory. In 1967, Pakistani Abdus Salam and American Steven Weinberg independently revised Glashow's theory by having the masses for the W particle and Z particle arise through spontaneous symmetry breaking with the Higgs mechanism. This unified theory was governed by the exchange of four particles: the photon for electromagnetic interactions, a neutral Z particle and two charged W particles for weak interaction. As a result of the spontaneous symmetry breaking, the weak force becomes short range and the Z and W bosons acquire masses of 80.4 and 91.2 GeV/c^2, respectively. Their theory was first given experimental support by the discovery of weak neutral currents in 1973. In 1983, the Z and W bosons were first produced at CERN by Carlo Rubbia's team. For their insights, Salam, Glashow and Weinberg were awarded the Nobel Prize in Physics in 1979. Carlo Rubbia and Simon van der Meer received the Prize in 1984.

After Gerardus 't Hooft showed the Glashow-Weinberg-Salam electroweak interactions was mathematically consistent, the electroweak theory became a template for further attempts at unifying forces. In 1974, Sheldon Glashow and Howard Georgi proposed unifying the strong and electroweak interactions into Georgi-Glashow model, the first Grand Unified Theory, which would have observable effects for energies much above 100 GeV.

Since then there have been several proposals for Grand Unified Theories, e.g. the Pati-Salam model, although none is currently universally accepted. A major problem for experimental tests of such theories is the energy scale involved, which is well beyond the reach of current accelerators. Grand Unified Theories make predictions for the relative strengths of the strong, weak, and electromagnetic forces, and in 1991 LEP determined that supersymmetric theories have the correct ratio of couplings for a Georgi-Glashow Grand Unified Theory. Many Grand Unified Theories (but not Pati-Salam) predict that the proton can decay, and if this were to be seen, details of the decay products could give hints at more aspects of the Grand Unified Theory. It is at present unknown if the proton can decay, although experiments have determined a lower bound of 1035 years for its lifetime.

Read more about this topic:  Unified Field Theory

Famous quotes containing the words modern and/or progress:

    The modern city hardly knows pure darkness or pure silence anymore, nor does it know the effect of a single small light or that of a lonely distant shout.
    Johan Huizinga (1872–1945)

    In progress of time, when my mind was, as it were, strongly impregnated with the Johnsonian æther, I could, with much more facility and exactness, carry in my memory and commit to paper the exuberant variety of his wit and wisdom.
    James Boswell (1740–1795)