Unification (computer Science) - Definition of Unification For First-order Logic

Definition of Unification For First-order Logic

Let p and q be sentences in first-order logic.

UNIFY(p,q) = U where subst(U,p) = subst(U,q)

Where subst(U,p) means the result of applying substitution U on the sentence p. Then U is called a unifier for p and q. The unification of p and q is the result of applying U to both of them.

Let L be a set of sentences, for example, L = {p,q}. A unifier U is called a most general unifier for L if, for all unifiers U' of L, there exists a substitution s such that applying s to the result of applying U to L gives the same result as applying U' to L:

subst(U',L) = subst(s,subst(U,L)).

Read more about this topic:  Unification (computer Science)

Famous quotes containing the words definition of, definition and/or logic:

    Scientific method is the way to truth, but it affords, even in
    principle, no unique definition of truth. Any so-called pragmatic
    definition of truth is doomed to failure equally.
    Willard Van Orman Quine (b. 1908)

    It is very hard to give a just definition of love. The most we can say of it is this: that in the soul, it is a desire to rule; in the spirit, it is a sympathy; and in the body, it is but a hidden and subtle desire to possess—after many mysteries—what one loves.
    François, Duc De La Rochefoucauld (1613–1680)

    Histories make men wise; poets witty; the mathematics subtle; natural philosophy deep; moral grave; logic and rhetoric able to contend.
    Francis Bacon (1561–1626)