Properties
From the above definition, one can conclude several typical properties of ultrametrics. For example, in an ultrametric space, for all and :
- Every triangle is isosceles, i.e. or or .
In the following, the concept and notation of an (open) ball is the same as in the article about metric spaces, i.e.
- .
- Every point inside a ball is its center, i.e. if then .
- Intersecting balls are contained in each other, i.e. if is non-empty then either or .
- All balls are both open and closed sets in the induced topology. That is, open balls are also closed, and closed balls (replace with ) are also open.
- The set of all open balls with radius r and center in a closed ball of radius forms a partition of the latter, and the mutual distance of two distinct open balls is again equal to .
Proving these statements is an instructive exercise. Note that, by the second statement, a ball may have several center points that have non-zero distance. The intuition behind such seemingly strange effects is that, due to the strong triangle inequality, distances in ultrametrics do not add up.
Read more about this topic: Ultrametric Space
Famous quotes containing the word properties:
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)
“A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”
—Ralph Waldo Emerson (18031882)