Formal Definition
Given a set X, an ultrafilter on X is a set U consisting of subsets of X such that
- The empty set is not an element of U
- If A and B are subsets of X, A is a subset of B, and A is an element of U, then B is also an element of U.
- If A and B are elements of U, then so is the intersection of A and B.
- If A is a subset of X, then either A or X \ A is an element of U. (Note: axioms 1 and 3 imply that A and X \ A cannot both be elements of U.)
A characterization is given by the following theorem. A filter U on a set X is an ultrafilter if any of the following conditions are true:
- There is no filter F finer than U, i.e., implies U = F.
- implies or .
- or .
Another way of looking at ultrafilters on a set X is to define a function m on the power set of X by setting m(A) = 1 if A is an element of U and m(A) = 0 otherwise. Then m is a finitely additive measure on X, and every property of elements of X is either true almost everywhere or false almost everywhere. Note that this does not define a measure in the usual sense, which is required to be countably additive.
For a filter F which is not an ultrafilter, one would say m(A) = 1 if A ∈ F and m(A) = 0 if X \ A ∈ F, leaving m undefined elsewhere.
Read more about this topic: Ultrafilter
Famous quotes containing the words formal and/or definition:
“The manifestation of poetry in external life is formal perfection. True sentiment grows within, and art must represent internal phenomena externally.”
—Franz Grillparzer (17911872)
“... we all know the wags definition of a philanthropist: a man whose charity increases directly as the square of the distance.”
—George Eliot [Mary Ann (or Marian)