Schwarzschild Solution
See also: Schwarzschild solutionAn exact solution to the Einstein field equations is the Schwarzschild metric, which corresponds to the external gravitational field of a stationary, uncharged, non-rotating, spherically symmetric body of mass M. It is characterized by a length scale rs, known as the Schwarzschild radius, which is defined by the formula
where G is the gravitational constant. The classical Newtonian theory of gravity is recovered in the limit as the ratio rs/r goes to zero. In that limit, the metric returns to that defined by special relativity.
In practice, this ratio is almost always extremely small. For example, the Schwarzschild radius rs of the Earth is roughly 9 mm (3⁄8 inch); at the surface of the Earth, the corrections to Newtonian gravity are only one part in a billion. The Schwarzschild radius of the Sun is much larger, roughly 2953 meters, but at its surface, the ratio rs/r is roughly 4 parts in a million. A white dwarf star is much denser, but even here the ratio at its surface is roughly 250 parts in a million. The ratio only becomes large close to ultra-dense objects such as neutron stars (where the ratio is roughly 50%) and black holes.
Read more about this topic: Two-body Problem In General Relativity
Famous quotes containing the word solution:
“Coming out, all the way out, is offered more and more as the political solution to our oppression. The argument goes that, if people could see just how many of us there are, some in very important places, the negative stereotype would vanish overnight. ...It is far more realistic to suppose that, if the tenth of the population that is gay became visible tomorrow, the panic of the majority of people would inspire repressive legislation of a sort that would shock even the pessimists among us.”
—Jane Rule (b. 1931)