Two-body Problem in General Relativity - Schwarzschild Solution

Schwarzschild Solution

See also: Schwarzschild solution

An exact solution to the Einstein field equations is the Schwarzschild metric, which corresponds to the external gravitational field of a stationary, uncharged, non-rotating, spherically symmetric body of mass M. It is characterized by a length scale rs, known as the Schwarzschild radius, which is defined by the formula


r_{s} = \frac{2GM}{c^{2}}

where G is the gravitational constant. The classical Newtonian theory of gravity is recovered in the limit as the ratio rs/r goes to zero. In that limit, the metric returns to that defined by special relativity.

In practice, this ratio is almost always extremely small. For example, the Schwarzschild radius rs of the Earth is roughly 9 mm (3⁄8 inch); at the surface of the Earth, the corrections to Newtonian gravity are only one part in a billion. The Schwarzschild radius of the Sun is much larger, roughly 2953 meters, but at its surface, the ratio rs/r is roughly 4 parts in a million. A white dwarf star is much denser, but even here the ratio at its surface is roughly 250 parts in a million. The ratio only becomes large close to ultra-dense objects such as neutron stars (where the ratio is roughly 50%) and black holes.

Read more about this topic:  Two-body Problem In General Relativity

Famous quotes containing the word solution:

    All the followers of science are fully persuaded that the processes of investigation, if only pushed far enough, will give one certain solution to each question to which they can be applied.... This great law is embodied in the conception of truth and reality. The opinion which is fated to be ultimately agreed to by all who investigate is what we mean by the truth, and the object represented in this opinion is the real.
    Charles Sanders Peirce (1839–1914)