The Tweedie Models and Multifractality
From the properties of self-similar processes, the power-law exponent p=2-d is related to the Hurst exponent H and the fractal dimension D by
- .
A one-dimensional data sequence of self-similar data may demonstrate a variance-to-mean power law with local variations in the value of p and hence in the value of D. When fractal structures manifest local variations in fractal dimension, they are said to be multifractals. Examples of data sequences that exhibit local variations in p like this include the eigenvalue deviations of the Gaussian Orthogonal and Unitary Ensembles. The Tweedie compound Poisson–gamma distribution has served to model multifractality based on local variations in the Tweedie exponent α. Consequently, in conjunction with the variation of α, the Tweedie convergence theorem can be viewed as having a role in the genesis of such multifractals.
Read more about this topic: Tweedie Distributions
Famous quotes containing the word models:
“Friends broaden our horizons. They serve as new models with whom we can identify. They allow us to be ourselvesand accept us that way. They enhance our self-esteem because they think were okay, because we matter to them. And because they matter to usfor various reasons, at various levels of intensitythey enrich the quality of our emotional life.”
—Judith Viorst (20th century)