Future Research
Because applying mathematical equations to turbulent flow and diffusion is so difficult, research in this area has been lacking until recently. In the past, laboratory efforts have used data from steady flow in streams or from fluids, that have a high Reynolds number, flowing through pipes, but it is difficult to obtain accurate data from these methods. This is because these methods involve ideal flow, which can't simulate the conditions of turbulent flow necessary for developing turbulent diffusion models. With the advancement in computer-aided modeling and programming, scientists have been able to simulate turbulent flow in order to better understand turbulent diffusion in the atmosphere and in fluids.
Currently in use on research efforts are two main non-intrusive applications. The first is planar laser-induced fluorescence (PLIF), which is used to detect instantaneous concentrations at up to one million points per second. This technology can be paired with particle image velocimetry (PIV), which detects instantaneous velocity data. In addition to finding concentration and velocity data, these techniques can be used to deduce spatial correlations and changes in the environment. As technology and computer abilities are rapidly expanding, these methods will also improve greatly, and will more than likely be at the forefront of future research on modeling turbulent diffusion.
Aside from these efforts, there also have been advances in fieldwork that was used before computers were available. Real-time monitoring of turbulence, velocity and currents for fluid mixing is now possible. This research has proved important for studying the mixing cycles of contaminants in turbulent flows, especially for drinking water supplies.
As researching techniques and availability increase, many new areas are showing interest in utilizing these methods. Studying how robotics or computers can detect odor and contaminants in a turbulent flow is one area that will likely produce a lot of interest in research. These studies could help the advancement of recent research on placing sensors in aircraft cabins to effectively detect biological weapons and/or viruses.
Read more about this topic: Turbulent Diffusion
Famous quotes containing the words future and/or research:
“We stand at once the wonder and admiration of the whole world, and we must enquire what it is that has given us so much prosperity, and we shall understand that to give up that one thing, would be to give up all future prosperity. This cause is that every man can make himself.”
—Abraham Lincoln (18091865)
“... research is never completed ... Around the corner lurks another possibility of interview, another book to read, a courthouse to explore, a document to verify.”
—Catherine Drinker Bowen (18971973)