Troubleshooting - Aspects

Aspects

Most discussion of troubleshooting, and especially training in formal troubleshooting procedures, tends to be domain specific, even though the basic principles are universally applicable.

Usually troubleshooting is applied to something that has suddenly stopped working, since its previously working state forms the expectations about its continued behavior. So the initial focus is often on recent changes to the system or to the environment in which it exists. (For example a printer that "was working when it was plugged in over there"). However, there is a well known principle that correlation does not imply causality. (For example the failure of a device shortly after it's been plugged into a different outlet doesn't necessarily mean that the events were related. The failure could have been a matter of coincidence.) Therefore troubleshooting demands critical thinking rather than magical thinking.

It's useful to consider the common experiences we have with light bulbs. Light bulbs "burn out" more or less at random; eventually the repeated heating and cooling of its filament, and fluctuations in the power supplied to it cause the filament to crack or vaporize. The same principle applies to most other electronic devices and similar principles apply to mechanical devices. Some failures are part of the normal wear-and-tear of components in a system.

A basic principle in troubleshooting is to start from the simplest and most probable possible problems first. This is illustrated by the old saying "When you see hoof prints, look for horses, not zebras", or to use another maxim, use the KISS principle. This principle results in the common complaint about help desks or manuals, that they sometimes first ask: "Is it plugged in and does that receptacle have power?", but this should not be taken as an affront, rather it should serve as a reminder or conditioning to always check the simple things first before calling for help.

A troubleshooter could check each component in a system one by one, substituting known good components for each potentially suspect one. However, this process of "serial substitution" can be considered degenerate when components are substituted without regards to a hypothesis concerning how their failure could result in the symptoms being diagnosed.

Simple and intermediate systems are characterized by lists or trees of dependencies among their components or subsystems. More complex systems contain cyclical dependencies or interactions (feedback loops). Such systems are less amenable to "bisection" troubleshooting techniques.

It also helps to start from a known good state, the best example being a computer reboot. A cognitive walkthrough is also a good thing to try. Comprehensive documentation produced by proficient technical writers is very helpful, especially if it provides a theory of operation for the subject device or system.

A common cause of problems is bad design, for example bad human factors design, where a device could be inserted backward or upside down due to the lack of an appropriate forcing function (behavior-shaping constraint), or a lack of error-tolerant design. This is especially bad if accompanied by habituation, where the user just doesn't notice the incorrect usage, for instance if two parts have different functions but share a common case so that it isn't apparent on a casual inspection which part is being used.

Troubleshooting can also take the form of a systematic checklist, troubleshooting procedure, flowchart or table that is made before a problem occurs. Developing troubleshooting procedures in advance allows sufficient thought about the steps to take in troubleshooting and organizing the troubleshooting into the most efficient troubleshooting process. Troubleshooting tables can be computerized to make them more efficient for users.

Some computerized troubleshooting services (such as Primefax, later renamed Maxserve), immediately show the top 10 solutions with the highest probability of fixing the underlying problem. The technician can either answer additional questions to advance through the troubleshooting procedure, each step narrowing the list of solutions, or immediately implement the solution he feels will fix the problem. These services give a rebate if the technician takes an additional step after the problem is solved: report back the solution that actually fixed the problem. The computer uses these reports to update its estimates of which solutions have the highest probability of fixing that particular set of symptoms.

Read more about this topic:  Troubleshooting

Famous quotes containing the word aspects:

    The happiest two-job marriages I saw during my research were ones in which men and women shared the housework and parenting. What couples called good communication often meant that they were good at saying thanks to one another for small aspects of taking care of the family. Making it to the school play, helping a child read, cooking dinner in good spirit, remembering the grocery list,... these were silver and gold of the marital exchange.
    Arlie Hochschild (20th century)

    It is always a sign of an unproductive time when it concerns itself with petty and technical aspects [in philology], and likewise it is a sign of an unproductive person to pursue such trifles.
    Johann Wolfgang Von Goethe (1749–1832)

    The North American system only wants to consider the positive aspects of reality. Men and women are subjected from childhood to an inexorable process of adaptation; certain principles, contained in brief formulas are endlessly repeated by the press, the radio, the churches, and the schools, and by those kindly, sinister beings, the North American mothers and wives. A person imprisoned by these schemes is like a plant in a flowerpot too small for it: he cannot grow or mature.
    Octavio Paz (b. 1914)