Trajectories Over The Galois Z Plane in GF(p)
When calculating the order of a given element, the intermediate results generate a trajectory on the Galois Z plane, called the order trajectory. In particular, If has order N, the trajectory goes through N distinct points on the Z plane, moving in a pattern that depends on N. Specifically, the order trajectory touches on every circle of the Galois Z plane (there are ||Gr|| of them), in order of increasing modulus, always returning to the unit circle. If it starts on a given radius, say R, it will visit, counter-clockwise, every radius of the form R+k.r, where r=(p2−1)/N and k = 0, 1, 2, ....., N − 1. Given a prime p 3 (mod 4), there are a (finite) number of (p − 1)/2 distinct circles over the Galois Z plane GI(p), and the number of distinct finite field ellipses is (p − 1).(p − 3)/4.
- Table V lists some elements ζ ∈ GI(7) and their orders N. Figures 3–5 show the order trajectories generated by ζ.
2j | 3 + 3j | 6 + 4j | |
N | 12 | 24 | 48 |
-
Figure 3. Order trajectory for ζ = j2, an element of order N = 12 of GI(7), on the Galois Z-plane over GF(7).
-
Figure 4. Order trajectory for ζ = 3 + j3, an element of order N = 24 of GI(7), on the Galois Z-plane over GF(7).
-
|Figure 5. Order trajectory for ζ = 6 + j4, an element of order N = 48 of GI(7), on the Galois Z Plane over GF(7).
Read more about this topic: Trigonometry In Galois Fields
Famous quotes containing the word plane:
“Weve got to figure these things a little bit different than most people. Yknow, theres something about going out in a plane that beats any other way.... A guy that washes out at the controls of his own ship, well, he goes down doing the thing that he loved the best. It seems to me that thats a very special way to die.”
—Dalton Trumbo (19051976)