Triglyceride - Metabolism

Metabolism

The enzyme pancreatic lipase acts at the ester bond, hydrolysing the bond and "releasing" the fatty acid. In triglyceride form, lipids cannot be absorbed by the duodenum. Fatty acids, monoglycerides (one glycerol, one fatty acid), and some diglycerides are absorbed by the duodenum, once the triglycerides have been broken down.

See also: fatty acid metabolism

In the intestine, following the secretion of lipases and bile, triglycerides are split into monoacylglycerol and free fatty acids in a process called lipolysis, which are subsequently moved to absorptive enterocytes, cells lining the intestines. The triglycerides are rebuilt in the enterocytes from their fragments and packaged together with cholesterol and proteins to form chylomicrons. These are excreted from the cells and collected by the lymph system and transported to the large vessels near the heart before being mixed into the blood. Various tissues can capture the chylomicrons, releasing the triglycerides to be used as a source of energy. Fat and liver cells can synthesize and store triglycerides. When the body requires fatty acids as an energy source, the hormone glucagon signals the breakdown of the triglycerides by hormone-sensitive lipase to release free fatty acids. As the brain cannot utilize fatty acids as an energy source (unless converted to a ketone), the glycerol component of triglycerides can be converted into glucose, via glycolysis by conversion into Dihydroxyacetone phosphate and then into Glyceraldehyde 3-phosphate, for brain fuel when it is broken down. Fat cells may also be broken down for that reason, if the brain's needs ever outweigh the body's.

Triglycerides cannot pass through cell membranes freely. Special enzymes on the walls of blood vessels called lipoprotein lipases must break down triglycerides into free fatty acids and glycerol. Fatty acids can then be taken up by cells via the fatty acid transporter (FAT).

Triglycerides, as major components of very-low-density lipoprotein (VLDL) and chylomicrons, play an important role in metabolism as energy sources and transporters of dietary fat. They contain more than twice as much energy (approximately 9 kcal/g or 38 kJ/g ) as carbohydrates (approximately 4 kcal/g or 17 kJ/g ).

Read more about this topic:  Triglyceride

Famous quotes containing the word metabolism:

    He’s got a fifteen percent metabolism with an overactive thyroid and a glandular affectation of about three percent. With a one percent mentality. He’s what we designate as the Crummy Moronic type.
    Robert Pirosh, U.S. screenwriter, George Seaton, George Oppenheimer, and Sam Wood. Dr. Hugo Z. Hackenbush (Groucho Marx)